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a b s t r a c t

Considering the rapid technical development of transmission electron microscopes, we investigate the

possibility to map electronic transitions in real space on the atomic scale. To this purpose, we analyse

the information carried by the scatterer’s initial and final state wave functions and the role of the

different atomic transition channels for the inelastic scattering cross section. It is shown that the change

in the magnetic quantum number in the transition can be mapped. Two experimental set-ups are

proposed, one blocking half the diffraction plane, the other one using a cylinder lens for imaging. Both

methods break the conventional circular symmetry in the electron microscope making it possible to

detect the handedness of electronic transitions as an asymmetry in the image intensity. This finding is of

important for atomic resolution energy-loss magnetic chiral dichroism (EMCD), allowing to obtain the

magnetic moments of single atoms.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

The new generation of transmission electron microscopes
(TEMs) , equipped with aberration correctors, energy filters and
monochromators provides exciting possibilities. It has been
shown recently that the new microscopes bear indeed enormous
potential for energy filtered images at atomic resolution
(HR EFTEM) [1–3]. In that context, HR EFTEM attract particular
interest. A notorious problem has been the combination of elastic
and inelastic interaction, i.e. the propagation of the probe electron
in the crystal potential before and after the inelastic event.
Although theoretically solved [4–11], applications have remained
elusive due to the huge computational effort. With a number of
insights and proposals, theory has also made progress [12,13],
providing advanced methods. It is therefore reasonable to
investigate some of those details of electronic transitions that
will be important for interpretation of results expected from last
generation microscopes. Such considerations may also serve as a
guide for future experiments and instrumental development.

In this paper we analyse the possibility to map electronic
transitions on an atomic scale, focussing on the information that is
contained in the initial and final state wave functions of the
scatterer. We concentrate on the inelastic interaction part and
calculate the wave function of the probe electron due to single
atomic transition channels. In doing so, we derive the inelastic
scattering kernel in real space. This treatment clarifies the role of
the different channels in the scattering cross section, and makes
contact to the density matrix approach [14]. Based on a recent
proposal [15] it will be shown that the handedness of electronic
transitions (which translates into the change in the magnetic
quantum number Dm ¼ 0 or �1) bear unique signatures that can
be mapped in real space.

This situation occurs in energy-loss magnetic chiral dichroism
(EMCD) experiments [16–18]. The particular attractivity of EMCD
lies in the possibility to detect atom specific magnetic moments in
combination with sum rules for the spin and orbital components
[19,20] with nanometer resolution [21]. Whereas the standard
EMCD geometry does not allow atomic resolution, it is shown that
off-axis HR EFTEM conditions are more favourable. Imaging with a
cylinder lens even allows the direct visualisation of the trans-
ferred angular momentum and its numerical evaluation on a per
atom-basis.

Apart from the fundamental interest in the physics of the chiral
and non-chiral transitions and its relationship to angular
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momenta, the analysis will provide some ideas about unusual
scattering geometries.

2. Basic considerations

After inelastic interaction, the probe electron is in a mixed
state. That means that a density matrix [22,23] describes the
system correctly. This concept has been proposed for fast electron
scattering by Dudarev et al., [5] and further developed by
Schattschneider et al. [14]. One may avoid the use of the density
matrix in inelastic electron scattering by propagating the
mutually incoherent wave functions of the probe to the detector,
and adding the respective intensities. There is a caveat, however:
in doing so, one loses information on the coherence between
different positions on the detector; secondly, adding intensities
instead of amplitudes one must be sure that there is no
interference between the different terms.

It is convenient to separate the three-dimensional (3D)
coordinates into z and x variables where the latter denote a
two-dimensional (2D) position vector in a lateral plane. In the
single inelastic scattering approximation, the density matrix of
the inelastically scattered electron at the exit plane of the
specimen (z ¼ d) is

roðro; r
0
oÞ ¼

Z
Gd�zðro;xÞG

�

d�z0 ðr
0
o;x
0ÞTzz0 ðx;x

0Þ

�rzz0 ðx;x
0ÞdSx dSx0 dz dz0, (1)

where ro and r0o are 2D variables for the positions in the exit
planes, Green’s function Gz propagates the electron after inelastic
interaction in the crystal potential from (x; z ¼ 0) to (r; z) and T is
the inelastic scattering kernel. rzz0 ðx;x

0Þ is the density matrix of
the incident electron at positions x; z;x0; z0 in the specimen. In
single inelastic scattering approximation rzz0 can be written as a
product of wave functions: because there was no inelastic
interaction before, the electron is still in a pure state

rzz0 ðx;x
0Þ ¼ czðxÞc

�

z0 ðx
0Þ (2)

with

czðxÞ:¼cðx; zÞ ¼
Z

Gzðx; riÞciðriÞdSri
(3)

with ri the lateral coordinate in the entrance plane of the
specimen (z ¼ 0), and ci the incident electron wave function.

Fig. 1 shows the position of the relevant planes in the
specimen. The integral in Eq. (1) is over the whole 3D specimen.

We should note that we have implicitly fixed the energy loss and
omitted this variable for convenience.

Eq. (1) is valid in single inelastic scattering approximation,
justified for core losses in specimens of usual thickness because
the core excitation’s mean-free path (MFP) is several hundred nm.

The density matrix rzz0 can be calculated with any dynamical
scattering code when the incident wave ciðriÞ at the entrance
surface z ¼ 0 is known. The density matrix ro at the exit plane
z ¼ d, Eq. (1), is finally propagated to the detector via GD

describing the action of lenses and apertures. The intensity IðsÞ
is measured in the detector plane z ¼ D. It is given by the diagonal
elements of the density matrix (rD)

IðsÞ ¼ rDðs; sÞ ¼

Z
GDðs; rÞG

�

Dðs; r
0Þroðr; r

0ÞdSr dSr0 . (4)

To resume, Eqs. (1)–(4) describe the inelastic scattering
experiment completely.

3. Atomic transition channels in real space

In the following part, we adapt Eq. (4) to the case of single
atom ionisation.

The propagator Gz depends on the energy of the probe electron.
We can extract a rapidly varying phase factor and obtain

Gzðx; rÞ ¼ Ḡzðx; rÞe
ikiz,

where ki ¼ 2p=li is the incident electron’s wave number. Ḡz is the
propagator normally used in multislice calculations or in Bloch
wave methods. When calculating elastic intensities, the phase
factor cancels with its complex conjugate, so it is omitted in
general. But in treating inelastic interactions we must keep it.

The propagator Gd�z applies to electrons after energy loss, that
is, we can also extract a rapidly oscillating phase factor as
previously for Gz:

Gd�zðx; rÞ ¼ Ḡd�zðx; rÞe
ikoðd�zÞ

with the outgoing electron’s wave number ko. We can now replace
the propagators in Eq. (1) by the normally used ones for Bloch
wave propagation

roðro; r
0
oÞ ¼

Z Z
Ḡd�zðro;xÞḠ

�

d�zðr
0
o;x
0ÞTzz0 ðx;x

0Þ

� c̄
�

z ðxÞc̄z0 ðx
0ÞdSx dSx0e

iqeðz�z0 Þ dz dz0, (5)

where after extraction of the exponential factors the wave
functions c of Eq. (3) are now replaced by

c̄zðxÞ ¼

Z
Ḡzðx; riÞciðriÞdSri

(6)

and qE ¼ ko � ki is the minimum wave vector transfer in the
inelastic interaction. For energy losses of o�1 kV as encountered
in EFTEM, the Bloch wave propagators Ḡz for the incident electron
and Ḡd�z for the inelastically scattered electron can be assumed to
be equal, which may simplify the calculations. (Note that this is
not the case for G because of the different phase factors.) We have
expressed the z dependence explicitly in preparation for the next
step. The inelastic scattering kernel T can be written in
configuration space as the convolution of the mixed dynamic
form factor (MDFF) [4] S with the Coulomb coupling field [24]
R�1
¼ 1=jRj where R is the configuration space vector R ¼ ðx; zÞ

Tzz0 ðx;x
0Þ ¼ SðR;R0Þ%ðR�1R0�1

Þ. (7)

Assuming that we have a plane wave incident parallel to the
optical axis, and a single atom in the object plane of a perfect lens,
then GDðs; roÞ ¼ d2

ðs; roÞ, and Gd�zðro;xÞ ¼ d2
ðro;xÞ, where d2 is the
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Fig. 1. Position of relevant planes in an inelastic scattering experiment: ci with

wave vector ki at the entrance plane (z ¼ 0) with coordinates ri , rzz0 at any depths z

and z0 within the specimen, and ro at the exit plane (z ¼ d). The detector is situated

after the post specimen lens system in the plane (z ¼ D) where lateral coordinates

are s and s0 .
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