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Abstract

A new method for the dynamical simulation of convergent beam electron diffraction (CBED) patterns is proposed. In this method, the

three-dimensional stationary Schrödinger equation is replaced by a two-dimensional time-dependent equation, in which the direction of

propagation of the electron beam, variable z, stands as a time. We demonstrate that this approach is particularly well-suited for the

calculation of the diffracted intensities in the case of a z-dependent crystal potential. The corresponding software has been developed and

implemented for simulating CBED patterns of various specimens, from perfect crystals to heavily strained cross-sectional specimens.

Evidence is given for the remarkable agreement between simulated and experimental patterns.
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1. Introduction

Convergent beam electron diffraction (CBED) is widely
recognized as a powerful technique to determine the crystal
structure (lattice parameters, crystal symmetry, charge
density distribution, etc.). Most interestingly, such infor-
mation can be obtained at the nanometer scale, which
makes the technique particularly valuable to investigate
local variations in the structure of the studied specimens. In
the last decade, both high spatial resolution and remark-
able sensitivity to small variations of the lattice parameters
have promoted CBED to one of the most appropriate
techniques to investigate mechanical strains in new
electronics devices [1–7].

While valuable information can be directly retrieved
from the experimental patterns, accurate determination of
most of the crystal parameters requires comparison with
calculated patterns. The usual methods for the simulation
of CBED patterns, perfectly suited for perfect crystals [8]
and for specific defects [9], proved to be unable to

reproduce the complex features observed in CBED
patterns of many strained crystals [6,10–12]. Much effort
has then been recently devoted to the development of
reliable methods to calculate the diffracted intensity
distribution in imperfect crystals. Chuvilin and Kaiser
[13] developed an original multislice approach to calculate
CBED patterns, which should be well adapted to the
simulation of imperfect crystals. In our group, we followed
a different approach, based on the unified theory for
electron diffraction proposed by Gratias and Portier [14].
In this approach, the z direction, represented by the zone
axis, is distinguished owing to the small angle approxima-
tion for high energy electrons, and the three-dimensional
stationary Schrödinger equation is replaced by a two-
dimensional z-dependent equation, in which z plays the
role of a time. Such an equation can then be solved using
time-dependent perturbation theory. We demonstrated in a
previous paper the interest of this description to calculate
the diffracted intensity in non homogeneously strained
specimens as epitaxial layers undergoing surface relaxation
effects [15]. Remarkable agreement between experimental
and simulated HOLZ line intensity profiles was thus
obtained for different lines in all the studied regions.
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In the present paper, we describe in details the method
that we developed to calculate CBED patterns as well as its
implementation using the home-made TDDT software
(named after the time-dependent dynamical theory that is
being used). The TDDT-calculated central disks of perfect,
faulted and strained crystals are compared with experi-
mental ones as well as with CBED central disks calculated
by a classical Bloch-wave method [8,16]. The reached
agreement validates the use of a time-dependent perturba-
tion theory to take into account the z-dependent terms of
the crystal potential.

2. Basis of the approach

As underlined by Gratias and Portier in Ref. [14], the
time-dependent quantum mechanics formalism can be
used to describe the interaction of a high energy electron
beam with a crystal potential in a TEM, by replacing
time by the variable z, which coincides with the direction
of propagation of the incident beam. In this small angle
scattering approximation, the three-dimensional stationary
Schrödinger equation will be replaced by a two-dimensional
z-dependent equation in the following way.

2.1. Two-dimensional z-dependent Schrödinger equation

The relativistic Schrödinger equation for electrons
elastically scattered by a potential U can be written [17] as

ð~r
2
þ k2
ÞFð~rÞ ¼ Uð~rÞFð~rÞ, (1)

where k is the modulus of the electron wave vector and
U ¼ �ð2m=_2ÞeV , in which V is the actual crystal
potential. In practice, let us choose as the z-direction the
zone axis that is closer to the direction of the incident
electron beam. The z-component of the wave vector will be
noted kz and the wave function F will then be expressed by

Fð~rÞ ¼ eikzzCð~r; zÞ with ~r ¼ ðx; yÞ. (2)

The small angle approximation allows us to replace Eq. (1)
by the following one:

i
qCð~r; zÞ

qz
¼ Hð~rÞCð~r; zÞ

with 2kzHð~rÞ ¼ �~r
2

xy �~w
2
þUð~rÞ, ð3Þ

in which ~w represents the radial component of the wave
vector in the ðx; yÞ plane and ~r

2

x;y ¼ q2=qx2 þ q2=qy2 is the
radial kinetic energy operator.

As this is an evolution equation, a solution can be
written as

Cð~r; zÞ ¼ Uðz; z0ÞCð~r; z0Þ, (4)

where Uðz; z0Þ is the causal evolution operator,

i
qUðz; z0Þ

qz
¼ HðzÞUðz; z0Þ. (5)

Note that in many cases, this equation cannot be solved
exactly. Approximate solutions are then obtained using
time-dependent perturbation theory.

2.2. z-Dependence of the crystal potential

In the perfect crystal, the periodic potential is usually
developed in a Fourier series and can thus be written as

Uð~rÞ ¼
X
~g

U~g expði~g �~rÞ,

U~g ¼
1

V c

Z
cell

d~rUð~rÞ expð�i~g �~rÞ, ð6Þ

where ~g stands for a reciprocal lattice vector and V c is the
volume of the unit cell. To take into account the
particularities of CBED, and more precisely to separate
the contributions of the zero-order Laue zone (ZOLZ)
from the ones of the higher-order Laue zones (HOLZ), the
reciprocal lattice vectors will be written ~g ¼ ð~G;�ngzÞ,
where ~G belongs to the zero-order Laue zone, gz is the
distance between two neighboring Laue zones and n the
order of the zone (i.e. n ¼ 1 for the first-order Laue zone).
Using these notations, first proposed by Vincent et al. [18],
the crystal potential can then be developed as

Uð~rÞ ¼ U ð0Þð~rÞ þ
X
na0

expð�ingzzÞU ðnÞð~rÞ,

in which U ðnÞð~rÞ ¼
X
~G

U
ðnÞ

ð~G;�ngzÞ
expði~G �~rÞ. ð7Þ

In this expression, the ZOLZ potential, U ð0Þð~rÞ, corre-
sponds to the well-known projected potential while the
other components U ðnÞð~rÞ are known as the higher-order
conditional projected potentials [18].
Using the development of Uð~rÞ in Eq. (7), the

Hamiltonian Hð~rÞ given in Eq. (3) can be written as

2kzHð~rÞ ¼ � ~r
2

xy �~w
2
þU ð0Þð~rÞ þ

X
na0

expð�ingzzÞU ðnÞð~rÞ

¼ 2kzH ð0Þð~rÞ þ
X
na0

expð�ingzzÞU ðnÞð~rÞ. ð8Þ

The Hð~rÞ Hamiltonian is thus clearly separated into a z-
independent and a z-dependent part. Eq. (8) can then be
solved in two steps, the z-dependent term being introduced
as a perturbation of the z-independent operator H ð0Þ [14].
As remarked by Bird [19], H ð0Þ corresponds to the ZOLZ
diffraction. We write

2kzHð~rÞ ¼ 2kzH0¼ZOLZð~rÞ þUHOLZð~r; zÞ. (9)

3. Presentation of the method

3.1. The ZOLZ diffraction

As H ð0Þ is z-independent, Eq. (5) can be solved exactly
(see for instance Ref. [14]) and its corresponding evolution
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