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Taper ball end mills (TBEM) are widely used in 5-axis machining of complex parts such as impellers.
Structural models are needed for calculating cutter load capacity and deflection and optimizing tool designs.
Developing analytical structural models is difficult due to the geometric complexity. This paper establishes a
novel 3D parametric model for as-ground TBEMs. Using this parameterized geometric model, the structure is

analyzed to calculate bending stress and cutter deflection. The analytical model results were found to be in
good agreement with Finite Element simulation results and experimental data from the literature.
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1. Introduction

Complex parts such as impellers are often machined on 5-axis
machines from disk-type forgings with Taper Ball End Mills (TBEM).
Designing or choosing TBEM cutters which can withstand the large
and variable cutting forces to produce the required finished part is
challenging because of their geometric complexity. Poor selection of
cutter and process parameters may result in unexpected tool
breakages and part damages. Too conservative a choice of process
parameters may result in extremely long cycle times.

To improve process robustness and reduce cycle time, 5-axis
machining processes are often optimized using machining models
[1]. Force-based optimization, often utilized, requires knowledge
of the cutter load capacity. Furthermore, tool deflection is to be
known to input tool compensation for machining with low-rigidity
tools. Structural models for TBEMs with the full flute structure are
needed to calculate the cutter load capacity and deflection under
various loads. Integrating FEA with NC tool path generation in
multi-axis milling models is not trivial. Moreover, each NC step
may involve a different axial depth of cut and cutting force
requiring a new loading and boundary condition setup in FEA.
Analytical structural models are therefore a necessity.

The available literature deals with either square end mills or
TBEMs without flute twist. Kops and Vo [2] studied the deflection
of square end mills and proposed using a cylinder of equivalent
diameter ~80% of the fluted end mill. Nemes et al. [3]incorporated
this approach to estimate cutter survival rates for TBEMs without
flute twist. More recently, Kivanc and Budak analyzed the dynamic
stability of square end mills by solving the dynamic Euler-
Bernoulli equations in a piecewise manner [4].

None of the cited literature deals with TBEMs with twisted
flutes and flute surfaces that match typical as-ground cutters. This
paper presents a strategy to fill this gap by modeling the flute
structure with a 6-parameter self-similar motif with the cutting
edge on a unit-radius circle. The flute surfaces are obtained by
patterning this motif for the number of flutes, scaling to the actual
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diameter, and rotationally transforming the cross section for a
prescribed lead length or helix angle. With the 3D geometric model
established, the tool deflection and load capacity are modeled
using the quasi-static Euler-Bernoulli beam theory when the
number of flutes is greater than 2.

2. TBEM model development

Flutes of TBEMs are often generated by grinding on multi-axis
CNC tool grinders with the aid of cutter grinding simulation. The
kinematics of the grinding process and the wheel geometry
determine the flute geometry of TBEMs [5,6]. The algebra of the
resulting surfaces is not tractable from a structural analysis
standpoint. It is more conducive if the surfaces are derived by
traversing through the rotational axis of the cutter.

To that end, the geometry of a unit-radius cutter cross section is
developed first. The cross-section is propogated through the cutter
axis to obtain all the flute surfaces parameterically. Optimal
parameters can be obtained to fit the geometry of any TBEM. The
motif or template for one flute in the self-similar flute cross-section
in the UV coordinate system for a right-handed tool is shown in Fig. 1

Boundary of single flute

Fig. 1. Motif for the self-similar flute cross-section for a RH tool.
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Fig. 2. Schematic of TBEM showing various symbols.

defined by the shape within points (O, po to pe). The points for a left
handed flute can be obtained by a mirror reflection about the U-axis.

The tool axis is aligned with the Z-axis (Fig. 2). Given the
number of flutes n, the angle @ is fixed. Starting from the cutting
edge, the motif consists of 2 line segments for the clearance faces
and 2 tangential arcs for the rake face and the blend area,
respectively. With the tool axis at Point O, the cutting edge is
located on the unit-radius circle at Point p, lying on the U-axis. The
geometry of the motif needs to satisfy: (1) the tool clearance ends
at Point pe on a circle of radius A; centered at Point O, (2) the
circular rake face of radius A3 centered at ps tangentially meets the
blend circle of radius A, centered at Point ps, (3) this blend circle is
tangential with the circle in (1). With these constraints, the
coordinates (p; = {u;, v;}) of various points (po to pg) for the single
flute can be expressed as follows (Eq. (1)):

Po = {Uo,vo} = {A1 cOs @, Ay sin g}

p1={u,vi} = p1(A1, 0,9, Y,)

p2 = {uz,v2} = {1,0}

P3 = {u3,v3} = p3(P, 0,11, 12) (1)
Pa = {Ua,Va} = Pa(D, 0,11, A2,A3)

Ps = {us,vs} = (A — Aa{cos(¢ — P),sin(¢ — D)}

Pe = {Us,V6} = {A1C0S(¢ — D), Aysin(p — @)}

While the expressions for the coordinates for points pg, P2, Ps
and pe are derived in a straightforward fashion, the remaining
points are derived from the constraints imposed. Specifying the
point py = {uy, v¢} is equivalent to specifying the angles ¥r; and
V¥, and vice versa. Expressions for the 4 remaining unknowns
(us, V3, ug,Vvs) to solve the points ps and p4 are given in Eq. (2).

2 2 2
Ug — Us +(V4—V5) :)\.2

( )
(U47U3)2+(V4 7\/3)2 :)\é (2)
(U —us3)® + (v —v3)® =23

(Us —Us)/(Va — Vs) = (Usg — U3)/ (V4 — V3)

The Area-Moment of Inertia (area-MOI) components JX* and JY
of the motif can then be calculated. Then, n — 1 copies of the motif
are made in a rotational pattern to form the unit-radius cross
section. The boundary of the unit-radius cross section can be
expressed as a vector function P(§) : 0 <& <L, — {u(§), v(§)} by
threading through all the arcs and lines, L, being the perimeter.

To form the 3D representation of the TBEM, the radius r(z) (Fig. 2)
for the scaling and the lag angle function ¥ (z) (Fig. 1) specifying the
orientation of the flute cross section along z axis are needed. To allow
an arbitrary global orientation of the tool, the cutting edge of the first
flute (point p,, Fig. 1) is located at angle ¥° from the X-axis at z=0.
The radius r(z) can be expressed as follows (Eq. (3)):

\/(d—2)z, if0 <z<I,
r@) =1 seco(d — (d — 22)sin6) /2, f Ly <z < L. (3)
D/Z, ifly<z<lLr

With L, and L; defined as:

L, =d(1 —sin6)/2
L; = sinf(—d + Dcos 6 + dsinf + sin6) /2

The lag function 9}, for a cutter with a constant helix angle  can
be proven to be Eq. (4):

Z dX
Oy = 0° + Ht X 4
h + an,u/o ) (4)

Here the variable H specifies left (—1) or right (+1) hand of the
flutes. The lag function for the ball and tapered flute portions of the
cutter are given by Eq. (5).

Inpan = ¥° + 2Htan ptan™'4/Z/(d - 2)
I, ute = ¥° + Htan pu(7r/2 — 6) + Htan p(cotOlog(d — dsin®  (5)
+ 2zsinf/d cos? 9))
For cutters with a constant lead [, the lag function is given by Eq.
(6).

2Hnz
, (6)

191:190-‘1-

Thus with P(§), 1(z), and ¥ (), the complete 3D tool surface can
be constructed parametrically.  The 6 parameters
(@, ¥y, ¥y, A1, Az, A3) for a given TBEM can be obtained by
superimposing the as-ground form with its parametric represen-
tation in a solid modeling environment such as UG NX®. The
starting values, especially for ¢, {1 and 1,, can be readily obtained
from the cross-sections of the as-ground tool. Adjustment of the
parameters may be needed so that the traces at various cross
sections match each other closely.

With the preceding formulation, an as-ground TBEM model
from a tool grinding software [6] was compared with its
parametric representation (parameters in Table 1) and is shown
in Fig. 3. The solid tool in green was constructed with the analytical
model and is shown superimposed with the as-ground cutter
model in red. The agreement is close as seen for three cross
sections at different z.

Table 1

Parameters of the test cutter.
Parameter Value Parameter Value Parameter Value
0(°) 2.0 H +1 vy (%) 25.77
wn() 30,0 ¥ (%) 12.0 @ (%) 25.19
M 0.93 Xa 0.56 A3 0.36
Ly (mm) 44.45 d (mm) 3.05 ]yfy @ 0.37
Lq (mm) 10 E (GPa) 700 Ar? 2.05
Ly (mm) 50.8 D (mm) 6.35 L (mm)? 48.77
q(z) (N/mm) 13.0 n 3 v 0.22
¢ Calculated.
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Fig. 3. Comparison of the ground tool and the analytical model.

3. Structural analysis of TBEMs

It is quite common to select cutters with 4 or more flutes for
machining of superalloy impellers. The mathematical represen-
tation of a TBEM using Eqs. (1)-(5) affords a very simple
methodology for stress and deflection analysis when n>2
because of the rotational invariance of the area-MOI. The center
0O becomes a principal point and all pairs of perpendicular axes
become principal axes [7]. The same is true when the cross-
section is a full circle. The area-MOI components of the unit
radius cross section for the fluted portion (f) and the solid
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