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1. Introduction

Nowadays, product recovery is drawing attention due to the
increased environmental concerns, government legislations,
awareness of natural resource limitation in worldwide and also
economical purpose. The objective of product recovery is to
recover as much of the economic (and ecological) value as
reasonably possible, thereby reducing the ultimate quantities of
waste.

A deterministic inventory model dealing with recovery was
firstly proposed by Schrady [24]. He analyzed an inventory
situation with constant demand and return rates when production
and recovery are instantaneous. For this policy, he gave expres-
sions for the optimal control parameter values and discussed their
dependence on the return rate. Teunter [26] generalizes the EOQ
formulae for (1, R) policies from Schrady [24] by including a
disposal option for non-serviceable items, and by using different
holding cost rates for produced and recovered serviceable items.
Richter [22,23] also includes a disposal option (though a sub-
optimal constant disposal rate is required) and studies both (1, R)
and (P, 1) policies. However, his model differs from that of Schrady

[24] and Teunter [26] in the existence of a collection point, where
used items are collected and from there returned in batches.
Richter derives a formula for the total average cost, but simple
formulae for the optimal lot sizes are not obtained. Nahmias and
Rivera [21] studied an EPQ variant of Schrady’s [24] model with a
finite recovery rate. The production rate was still infinite. They
assumed that the recovery rate is larger than the demand rate, and
derive lot-sizing formulae for (1, R) policies. Koh et al. [11]
generalized the model of Nahmias and Rivera [21] by assuming a
limited repair capacity. Dobos and Richter [5] discussed a model in
which the disposal option of the returned items is allowed and all
the recycling batches follow the production batches. Teunter [27]
derived square-root formulae that determine the optimal produc-
tion and recovery lot-sizes for two classes of policies: (1, R) and (P,
1). Konstantaras and Papachristos [12] extended the work of
Teunter [27] by allowing for complete backordering of demand;
however, they also consider only the restricted classes of (1, R) and
(P, 1) policies. Konstantaras and Papachristos [14,15] improved
Teunter’s [27] work by developing an exact solution that leads to
the optimal number of manufacturing and remanufacturing lots
and their corresponding lot sizes for certain parameter classes.
Widyadana and Wee [31] developed an integrated solution
procedure for each of the two policies of Teunter [27] using
algebraic approaches. Choi et al. [1] presented a joint EOQ and EPQ
model for an inventory control problem in a closed loop system, in
which the demand can be satisfied by purchasing brand-new
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The article deals with a stochastic inventory model, considering two types of markets: one for good

quality and another for average quality of products. Recovery rates of used products from customers of

two different markets are random variables and recovery items are stored in two store warehouses.

Warehouse 1 stores the products collected from the customers of market 1 and warehouse 2 keeps the

products collected from the customers of market 2. At the end of each generation (cycle period), recovery

items of store houses are screened and then they are separated into three types of items. Partly

deteriorated items, components of raw material from some of the recoverable products and the disposal

items are stored in warehouse 1. Another two types of items, components of raw material from some of

the recoverable products and totally disposable items, are stored in warehouse 2. In next generation,

components of production lot are combination of recovery and new components. The partly damaged

products are re-manufactured along with the defective items during regular production and these are

sold in market 2. The philosophy of our model is that, at the beginning of one cycle, production lot-size is

combination of new and recovered components and also defective products are re-manufactured with

the recovery of partly damaged products from previous generation. The problem is to coordinate optimal

production lot size so that the total expected profit in the mth generation of the model is maximized.
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products and re-manufacturing used products. Tang and Teunter
[25] studied the economic lot scheduling problem with returns
(ELSPR), which had been motivated by a case study from a
company operating a hybrid production line to produce both new
car parts and remanufacturing car parts. A number of authors
developed inventory models and policies related to the recovery
product systems such as Krikke et al. [19], Johnson and Wang [9],
Ferguson and Toktay [7], Ma et al. [20], Vadde et al. [29,30],
Konstantaras et al. [18], Cárdenas-Barrón [2–4], and Hasanov et al.
[8], Konstantaras and Papachristos [13], Konstantaras and Skouri
[16], Konstantaras [17]. Most recently, Feng and Viswanathan [6],
Teunter [28] proposed two new lot-sizing and scheduling policies,
with an innovative inter leaving scheme. In both heuristics, a
general (P, R) policy is used. In the first heuristic, the lot sizes for
manufacturing and remanufacturing are kept identical across all
sub cycles. Their proposed heuristic outperformed the best of the
Teunter’s [27] policies. Kim and Goyal [10] investigated the
optimization problem aimed at integrating both the consumption
flow and the recovery flow to guarantee the profitability of closed-
loop supply chain. They considered the manufacturer’s problem
and the corresponding objective was to maximize the profit
obtainable from the integrated management of lot-streaming.

In our model, we consider a stochastic inventory model with
products recovery involving two types of selling markets (M1

denoting market 1 for perfect quality products and M2 denoting
market 2 for average quality product). The problem is to coordinate
optimal production lot size inventory so that the total expected
profit in the mth generation of the model is maximized. Here, we
study the model for the products where the used products can be
recollected from the environment and that recollected products
have a market value such that these can be used as raw-material of
the products or these can be used after re-manufactured. There are
several products such as electronics goods, clothes, and furniture.

The main novelty of our paper is outlined below:

� In the model, we consider two types of markets (market 1 (M1)
for good quality branded items and market 2 (M2) for average
quality items (not branded)).
� The demand rates of markets are random.
� The recovery rate of products from customers of M1 and M2 are

random variables.
� Product collection processes from the customers of two types of

markets are different. From the customers of M1, three types of
products (partly damaged products, components of raw material
from some of the recoverable products and totally disposable
items) are collected and from the customers of market 2 (i.e. for
average quality items collected people), two quality products
(components of raw material from some of the recoverable
products and totally disposable items) are collected.
� Also, we develop the model up to nth generation.

2. Fundamental assumptions and notations

2.1. Assumptions

The following assumptions are made to develop the model:

(i) The model under consideration comprises of two markets,
demand of M1 is for good quality products and demand of M2

is for average quality products and both demands are random
variable.

(ii) Production rate and re manufacturing rate are constant.
(iii) The recovery rate of product from customers of M1 and M2 are

random variables and are stored in respective two store
houses.

(iv) Proportion of defective items during production is constant.
(v) At the end of each cycle, the recoverable products of store

houses are inspected and are separated into three types of
products (partly damaged products, components of raw
material from some of the recoverable products and totally
disposable items) for store house 1 and two types of products
components of raw material from some of the recoverable
products and totally disposable items) for store house 2.

(vi) In initial generation, raw material of production are all new
and only defective items during production are re-manu-
factured.

(vii) For the production in the present generation (except initial
generation), some new raw materials and a percentage of
components of raw materials from both the store houses
already recovered from the customers in the previous
generation from the source of raw materials in the present
generation. The defective items found during regular
production in the present generation and partly damaged
items which have already been recovered in the previous
generation are remanufactured in the present generation.

(viii) Maximum recovered items are a proportion of total selling
items.

2.2. Notations

The following notations are used throughout the paper:

Q production lot size

P production rate per unit time

P1 remanufacturing rate per unit time

Q0 recovery components of raw materials lot

Q1 serviceable items lot for M1

Q2 serviceable items lot for M2

X demand for the products in M1 (a random variable)

f(�) probability density function of X

F(�) cumulative density function of X

Y demand for the products in M2 (a random variable)

g(�) probability density function of Y

G(�) cumulative density function of Y

lP production rate of perfect items

(1 � l)P production rate for defective items, where 0 < l < 1

R product recovery rate of used products from market 1
(a random variable)

j(�) probability density function of R

R1 product recovery rate of used products from M2

(a random variable)

z(�) probability density function of R1

a fraction of product recover from recovered items of M1

b fraction of components from recovered items
of M1, where a + b � 1

m fraction of components from recovered items of M2,
where m � 1

Cn new component cost per unit item

Cr purchasing cost per unit of recovered item from M1

C0r purchasing cost per unit of recovered item from M2

Cp production cost per unit item

C0p remanufacturing cost per unit item

Cs inspection cost per unit of recovered item of M1

C0s inspection cost per unit of recovered item of M2
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