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a b s t r a c t

Multiple scattering of protons through a target is explained by a set of coupled stochastic differential
equations. The motion of protons in matter is calculated by analytical random sampling from Moliere
and Landau probability density functions (PDF). To satisfy the Vavilov theory, the moments for energy
distribution of a 49.1 MeV proton beam in aluminum target are obtained. The skewness for the PDF of
energy demonstrates that the energy distribution of protons in thin thickness becomes a Landau function,
whereas, by increasing the thickness of the target it does not follow a Gaussian function completely.
Afterwards, the depth-dose distributions are calculated for a 60 MeV proton beam traversing soft tissue
and for a 160 MeV proton beam travelling through water. The results prove that when elastic scattering is
taken into account, the Bragg-peak position is decreased, while the dose deposited in the Bragg region is
increased. The results obtained in this article are benchmarked by comparison of our results with the
experimental data reported in the literature.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Development of accurate algorithms for heavy charged particle
transport through matter is important due to its applications in
therapy and high RBE compared to conventional radiotherapy with
photons and electrons. In general, inelastic collision and elastic
scattering are two principle features characterizing the passage
of heavy charged particles through matter. Inelastic collision was
first calculated by Bohr using the classical argument and later by
Bethe-Bloch taking into account quantum mechanics [1,2]. This
process for a beam of particles is subject to energy fluctuation,
because of the stochastic nature of the energy loss process.
Landau demonstrated that the energy probability distribution in
thin thickness is highly asymmetric with a pronounced high
energy tail [3]. Later Vavilov predicted that the PDF of energy has
a shape between the Gaussian and Landau function based on the
parameter j [4]. This theory was experimentally verified by
Maccabee and Tschalar [5,6]. In multiple scattering where the
energy loss is negligible, Moliere expressed the polar angle distri-
bution as series for investigation on charged particle deviation
[7]. Moreover, Bethe presented Moliere distribution function for
small angles in a simple mathematical approach [8]. Moliere func-
tion can be simplified in Gaussian form if Dx=Lr > 10�3, where Dx
and Lr are the thickness and radiation length of absorber, respec-
tively [9]. In this case, Noshad employed the results of the TRIM

computer code and studied beam deviation in matter [10]. Later
Mertens et al., derived an analytical method for flux of particles
with the Gaussian PDF to analyze the beam deviation [11]. One
can find a semi-analytical method based on the Fermi–Eyges equa-
tion for calculation of dose distribution [11,12] developed by
Hollmark et al. [13]. The results of considering inelastic scattering
for dose distribution are investigated in [14–16].

In this article, we derived a set of coupled stochastic differential
equations in order to investigate on inelastic collision and elastic
scattering by analytical random sampling from the Moliere and
Landau PDFs. Besides, the evolution for the PDF of energy as well
as the depth-dose distribution are investigated in different materi-
als. We also studied the effect of elastic scattering on depth-dose
distribution via the moments of the energy PDF. The results
obtained from our stochastic model are in good agreement with
the experimental data.

2. Theory and methods

2.1. Inelastic collision

With due attention to the stochastic nature of energy loss for
passage of a proton beam through matter, the following formalism
has been considered for the stochastic differential equation for
evolution of energy TiðxÞ in depth x and thickness interval Dx,

Tiðxþ DxÞ ¼ TiðxÞ þ n kþ ln
n2mc2biðxÞ
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In the relation, C ¼ 0:5772156 is the Euler–Mascheroni constant
and biðxÞ is the velocity coefficient of the ith charged particle at step
x. The parameter n and k denote the mean energy loss in thickness
Dx and Landau parameter, respectively. The mean excitation poten-
tial of target material I can be obtained from theoretical formalism
and experimental data [19,20]. In order to employ the Landau PDF,
the value of thickness Dx is not constant and it is calculated as
follows

Dx ¼ k
1:022b4A

ð1� b2Þ0:1535qZ
; ð2Þ

where k is a constant. Our results are in good agreement with the
experimental data with k = 0.007 for water and tissue [21];
whereas, k = 0.00648 and 0.00640 correspond to aluminum and sil-
icon, respectively [22,23]. To obtain k, two random numbers
f1 2 ½0;0:9931� and f2 2 ½0;1� are generated. If 0 6 f1 < 0:0141, then
k is obtained as follows

k ¼ 106ð0:15948f15
2 � 1:277f14

2 þ 4:672f13
2 � 10:35f12

2

þ 15:50f11
2 � 16:60f10

2 þ 13:10f9
2 � 7:749f8

2 þ 3:452f7
2

� 1:156f6
2Þ þ 28745f5

2 � 5202f4
2 þ 6621f3

2 � 563f2
2

þ 30:50f2 � 3:4: ð3Þ

Moreover, if 0:0141 6 f1 < 0:1136, the procedure can be followed
as

k ¼ �3:052f8
2 þ 14:42f7

2 � 29:31f6
2 þ 33:77f5

2 � 24:67f4
2

þ 12:33f3
2 � 4:725f2

2 þ 2:226f2 � 2: ð4Þ

If 0:1136 6 f1 < 0:6642, the algorithm can be continued as below

k ¼ �0:5071f8
2 þ 4:565f7

2 � 11:78f6
2 þ 16:26f5

2 � 13:35f4
2

þ 8:298f3
2 � 3:103f2

2 þ 3:622f2 � 1; ð5Þ

and if 0:6642 6 f1 < 0:9435, then the value for k can be calculated
from the following prescription

k ¼ 293:86f8
2 � 968:52f7

2 þ 1340:7f6
2 � 988:77f5

28þ 419:7f4
2

� 97:852f3
2 þ 14:704f2

2 þ 3:1669f2 þ 3: ð6Þ

Finally, if 0:9435 6 f1 6 0:9934, the value for k can be determined
as follows

k ¼ 16956:88f10
2 � 73891:79f9

2 þ 139407:7f8
2 � 148468:2f7

2

þ 97854:35f6
2 � 41107:26f5

2 þ 10945:64f4
2 � 1745:207f3

2

þ 166:5348f2
2 þ 11:37218f1 þ 20: ð7Þ

According to the above Eqs. (3)–(7), k is obtained via the aforemen-
tioned analytical functions. The associated error for random sam-
pling of parameter k in the interval �3:4 6 k 6 150 is less than 1%

Fig. 1. The energy probability density function for a 19.68 MeV proton beam in an
aluminum foil at x = 0.0051 g/cm2 in (a) and x = 0.099 g/cm2 in (b).

Fig. 2. The moments for PDF of the energy for a 49.1 MeV proton beam in an aluminum target.
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