ELSEVIER

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research B

journal homepage: www.elsevier.com/locate/nimb

Thermal neutron capture cross section and resonance integral of the 139 La(n, γ) 140 La reaction

Nguyen Van Do ^a, Pham Duc Khue ^a, Kim Tien Thanh ^a, Nguyen Thi Hien ^a, Guinyun Kim ^{b,*}, Sungchul Yang ^{b,c}, Young-Sik Cho ^c, Tae-Yung Song ^c, Young-Ouk Lee ^c, Sung Gyun Shin ^d, Moo-Hyun Cho ^d, Man Woo Lee ^e

- ^a Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi, Viet Nam
- ^b Department of Physics, Kyungpook National University, Daegu 702-701, Republic of Korea
- ^c Nuclear Data Center, Korea Atomic Energy Research Institute, Daejeon 305-353, Republic of Korea
- ^d Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
- ^e Research Center, Dongnam Institute of Radiological and Medical Science, Busan 619-953, Republic of Korea

ARTICLE INFO

Article history: Received 24 January 2014 Received in revised form 14 May 2014 Accepted 21 May 2014 Available online 19 June 2014

Keywords: Thermal neutron capture cross section Resonance integral 139 La $^{(n,\gamma)^{140}}$ La 197 Au $^{(n,\gamma)^{198}}$ Au Activation method

ABSTRACT

The thermal neutron capture cross section (σ_0) and resonance integral cross section (I_0) of the 139 La $(n,\gamma)^{140}$ La reaction have been measured relative to that of the 197 Au $(n,\gamma)^{198}$ Au reaction by means of the activation method. High-purity natural lanthanum and gold foils were exposed to pulsed neutrons at the Pohang neutron facility. One set of foils was irradiated directly and a second set of foils was shielded with a cadmium cover of 0.5 mm thickness. The induced activities in the activated foils were measured by a γ -ray spectrometer based on a calibrated high purity germanium (HPGe) detector. In order to improve the accuracy of the experimental results the epithermal neutron spectrum shape factor (α) was determined, and the corrections for the thermal neutron self-shielding (G_{epi}) , the γ -ray attenuation (F_g) and the γ -ray coincidence summing effects were made. The thermal neutron cross-section for the 139 La $(n,\gamma)^{140}$ La reaction has been determined to be 9.16 ± 0.36 barn, relative to the reference value of 98.65 ± 0.09 barn for the 197 Au $(n,\gamma)^{198}$ Au reaction. By assuming the cadmium cut-off energy of 0.55 eV, the resonance integral cross section for the 139 La $(n,\gamma)^{140}$ La reaction is 11.64 ± 0.69 barn, which is determined relative to the reference value of 1550 ± 28 barn for the 197 Au $(n,\gamma)^{198}$ Au reaction. The measured results are compared with literature values and discussed.

 $\ensuremath{\text{@}}$ 2014 Elsevier B.V. All rights reserved.

1. Introduction

Natural lanthanum ($^{\mathrm{nat}}$ La) consists of the stable isotope 139 La with abundance of 99.9119(71)% and the radioactive isotope 138 La (half-life of $1.02(1) \times 10^{11}$ years) with abundance of 0.08881(71)%. The 139 La with N=82 is known as the neutron magic isotope, which represents a promising s- and r-process indicator in stellar nucleosynthesis [1,2]. The 139 La is also an abundant fission product from the decay chain 139 Xe \rightarrow 139 Cs \rightarrow 139 Ba \rightarrow 139 La in thermal neutron fission of 235 U [3], therefore it is widely used for neutron dosimetry in nuclear power plants [4] due to the half-life of 140 La is rather long ($T_{1/2}=1.67855(12)$ d). In addition, the radioactive isotope 140 La is used as radiotracer in industrial and environ-

mental applications [5]. We measured the thermal neutron capture cross section and the resonance integral of the 139 La(n, γ) 140 La reaction relative to the reference values of the 197 Au(n, γ) 198 Au reaction by using the activation method at the Pohang neutron facility (PNF) based on the 100-MeV electron linac of the Pohang accelerator laboratory (PAL). Recently, several similar neutron activation measurements were performed on this neutron facility [6,7].

There are 14 experimental [8–21] and 9 evaluated [22–30] data on the thermal neutron capture cross sections, and 10 experimental [10,13,15,31–37] and 8 evaluated [22–25,27–30] data on the resonance integral for the 139 La($_{\rm n}$, $_{\rm n}$) 140 La reaction, respectively. The experimental thermal neutron cross sections vary from 8.1 [16] to 9.5 [15] barn, differ by about 17%, and the resonance integral data vary from 10.8 [36] to 17.1 [33] barn, differ by about 58%, respectively. Although the maximum deviation among the resonance integral is large, however most of them are in the range of 10.8–12.5 barn (differ by about 16%).

^{*} Corresponding author. Tel.: +82 53 950 5320; fax: +82 53 939 3972. E-mail address: gnkim@knu.ac.kr (G. Kim).

The present work was undertaken with the aim to provide additional thermal neutron capture cross section and the resonance integral of the $^{139}\text{La}(n,\gamma)^{140}\text{La}$ reaction for comparison. In order to improve the accuracy of the experimental results, we corrected for the thermal neutron self-shielding (G_{th}) and the resonance neutron self-shielding (G_{epi}) effects, the γ -ray attenuation (F_g) , and the γ -ray coincidence summing (F_{sum}) effects. Since the neutron field used in the sample activation is appropriated by the $1/E^{1+\alpha}$ distribution, there is remarkable effect in the final result due to the magnitude of the spectrum shape factor (α) . We have also taken into account the effect of the spectrum shape factor (α) in the epithermal neutron spectrum in order to determine the resonance integral with high accuracy.

2. Experimental procedure

2.1. Neutron facility

The experiment was carried out at the PNF based on the 100-MeV electron linac of the Pohang accelerator laboratory. The characteristics of the PNF are described elsewhere [38-40], so only a general description is given here. The PNF consists of an electron linac, a photo-neutron target, and a 12-m long time-of-flight (TOF) path. The electron beam impinges upon a water-cooled tantalum target and produce bremsstrahlung radiation, which in turn generate photo-neutrons. The distributions of neutrons with and without water moderator were described elsewhere [41,42]. The photo-neutrons produced in the giant dipole resonance region consist of a large portion of evaporated neutrons and a small fraction of directly emitted neutrons which dominated at high energies. The neutrons produced in the Ta target without water moderator have a Maxwellian energy distribution with a nuclear temperature of 0.45 MeV. The estimated neutron yield per kW of beam power for electron energies above 50 MeV at the Ta target is about 1.9×10^{12} n/s [41], which is consistent with the calculated value based on Swanson's formula, $1.2 \times 10^{11} Z^{0.66}$, where Z is the atomic number of the target material [43]. The total neutron yield per kW of beam power was also measured by using the multiple-foil technique and found $(2.30 \pm 0.28) \times 10^{12}$ n/s [42]. The neutron energy spectrum with the water moderator is shifted to the lower energy region because of moderation by the water. In order to increase the thermal neutrons we have used water to a level of 3-5 cm above the Ta target surface [41]. In this experiment the water level was 5 cm above the target surface. The cadmium ratio defined as $CR = (R/R_{Cd})$, where R and R_{Cd} are reaction rates per atom for bare and Cd-covered isotope irradiation, were measured to be 2.96 ± 0.05 for 197 Au and 7.58 ± 0.09 for 139 La, respectively.

2.2. Sample preparation and irradiation

Two natural lanthanum metallic foils, 12×12 mm square and 0.1 mm in thickness, were prepared as the activation samples. In

Table 1 Characteristics of La, Au, and In foils.

Foils	Size (mm)	Thickness (mm)	Weight (g)	Purity (%)
La1	12 × 12	0.1	0.0955	99.9
La2	12×12	0.1	0.0981	99.9
Au1	12×12	0.1	0.3173	99.95
Au2	12×12	0.1	0.3082	99.95
In1	12×12	0.05	0.0505	99.99
In2	12×12	0.05	0.0558	99.99
In3	12×12	0.05	0.0556	99.99
In4	12×12	0.05	0.0534	99.99
In5	12×12	0.05	0.0565	99.99
In6	12×12	0.05	0.0569	99.99

addition, we have also prepared two gold (Au) and six indium (In) metallic foils with the same size for comparator reactions and as neutron fluence monitors, respectively. The characteristics of these samples are given in Table 1.

The prepared La, Au, and In foils were irradiated simultaneously. The La and Au foils were irradiated with and without a Cd cover of 0.5 mm thickness. The neutron fluence exposed to La and Au foils was determined from the measured activities of the In monitors. For the neutron irradiations, the La, Au, and In foils were placed on the top of the water moderator as shown in Fig. 1, where La2(Cd) and Au2(Cd) denote the activation samples covered with a 0.5 mm Cd shield. The irradiation time was 140 min yielding enough the activities to be measured in a γ -ray counting system. The considered nuclear reactions 139 La(n, γ) 140 La, 197 Au(n, γ) 198 Au, and 115 In(n, γ) 116m In and their decay data used in calculations are given in Table 2 [44].

2.3. Activity measurement

The induced activities of the activated foils were measured by using an energy- and efficiency-calibrated high-purity germanium (HPGe) detector (ORTEC, GEM-20180-p) coupled to a PC-based 4 K channel analyzer. The photo-peak area was determined using the Gamma Vision, version 5.10. The energy resolution of the detector was 1.8 keV full width at half maximum (FWHM) at the 1332.5-keV peak of 60 Co. The detection efficiency is 20% at 1332.5 keV relative to a 3" diameter \times 3" length Nal(Tl) detector. The absolute photopeak efficiencies and total efficiencies of the HPGe detector were measured with the calibrated γ -sources. The details of the detector efficiency calibrations were illustrated in Refs. [45,46].

For the activity measurement, the activated foil was attached to a plastic sample holder and it can be set at distances from 0.5 to 20 cm from the surface of the HPGe detector by 1 cm step. We first measured the activity of the indium foils after irradiation because the half-life of ^{116m}In is considerably shorter than that of the ¹⁴⁰La and ¹⁹⁸Au. Since the half-lives of ¹⁴⁰La and ¹⁹⁸Au are rather long, the measuring times for -ray spectra varied from few 10 min to some hours depending on the statistics of the γ -ray peaks of interest. The induced activities in the ^{116m}In and ¹⁹⁸Au foils were determined by measuring the γ -rays of 1293.56 keV (84.4%) and 411.8 keV, respectively. The activities of the ¹⁴⁰La foils were determined by measuring the γ -rays at 328.76 keV (20.3%) and 487.02 keV (45.5%). The long counting distances were selected to reduce the counting losses due to true coincidence summing and pile-up effects. Usually, the dead-time of the data acquisition system was kept below 2%. The partial γ -ray spectrum from the La foil irradiated with moderated neutrons is given in Fig. 2.

3. Data analysis

3.1. Determination of the thermal neutron capture cross section

The thermal neutron capture cross section for the 139 La(n,γ) 140 La reaction, $\sigma_{0,La}$, has been determined relative to that of the 197 Au(n,γ) 198 Au reaction as follows [47]:

$$\sigma_{0,La} = \sigma_{0,Au} \times \frac{R_{La} - F_{La,Cd}R_{La,Cd}}{R_{Au} - F_{Au,Cd}R_{Au,Cd}} \times \frac{G_{th,Au}}{G_{th,La}} \times \frac{g_{Au}}{g_{La}}, \tag{1}$$

where $\sigma_{0,Au}$ is the thermal neutron cross section of the 197 Au(n, γ) 198 Au reaction, R_x and $R_{x,Cd}$ are reaction rates per atom for bare and Cd-covered x (La or Au) isotope irradiation, respectively. The cadmium transmission correction factor, $F_{x,Cd}$ accounts for the difference in count rate for Cd covered and bare samples, and $G_{th,x}$ is the thermal neutron self-shielding factor for x sample. The Westcott correction factor, g_x accounts for the deviation of

Download English Version:

https://daneshyari.com/en/article/1679942

Download Persian Version:

https://daneshyari.com/article/1679942

<u>Daneshyari.com</u>