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a b s t r a c t

Quantum effects can contribute significantly to the electronic stopping powers in the interactions
between the fast moving beams and the degenerate electron gases. From the Pauli equation, the spin
quantum hydrodynamic (SQHD) model is derived and used to calculate the stopping power and the
induced electron density for protons moving above a two-dimensional (2D) electron gas with considering
spin effect under an external in-plane magnetic field. In our calculation, the stopping power is not only
modulated by the spin direction, but also varied with the strength of the spin effect. It is demonstrated
that the spin effect can obviously enhance or reduce the stopping power of a 2D electron gas within a
laboratory magnetic field condition (several tens of Tesla), thus a negative stopping power appears at
some specific proton velocity, which implies the protons drain energy from the Pauli gas, showing
another significant example of the low-dimensional physics.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

High energy (from few hundreds of keV up to GeV) intense ion
beams can be used to generate high energy density matter when
interacting with a solid target, which have been of long research
interests in high energy density physics (HEDP) [1–4], inertial
confinement fusion [5,6] and astrophysics [7]. High energy ions
moving near a solid surface may lose their energy mainly due to
the interaction with the electrons, thus the so-called stopping
power of electron gases is of special interest.

Since the pioneer works by Bohr [8,9] with classical treatment,
and with quantum mechanical approach by Bethe [10] and Bloch
[11], stopping power has been the subject of extensive investiga-
tion [12–31]. The random-phase approximation (RPA) dielectric
theory [12,13] and binary collision approach [19], have become
two of the most used methods to calculate the stopping power.
However, the dielectric function and binary collision approaches
to stopping power of projectiles in plasmas are only valid in the
regimes where the plasma is close to ideal, and the coupling
between the charged particle and the plasma is weak [18]. Horing
[13] investigated the stopping of a swift particle moving parallel to
a 2D surface plasma with fixed distance and velocity, in the frame-

work of the RPA description. Besides, Lindhard et al. [17] calculated
the stopping power and the corresponding straggling for ions of
arbitrary charge number and any relativistic velocity, and showed
some important discrepancies of their results with the first-order
quantum perturbation results. The stopping power for slow pro-
tons and antiprotons moving in 2D electron gases (2DEGs) was
consistently calculated within the framework of quantum scatter-
ing theory [14]. A density-functional theory [21] was used to study
the nonlinear screening and stopping properties of a 2D electron
gas (2DEG), in which an external static point charge was consid-
ered. In recent works, one or two-fluid hydrodynamic model has
been proven to be an effective method to study the interaction pro-
cesses as well as the stopping power, which has been a major
method in this area [22,23,32,27]. In addition, particle-in-cell
(PIC) [25] and Monte-Carlo (MC) [20], were also adopted to study
the stopping power in the interaction process between ions and
plasmas. Lately, the molecular dynamics model was employed to
study the electronic stopping power for protons and helium ions
[29]. The stopping power for heavy ions in a thin silicon nitride
and in thin polypropylene foils were measured experimentally by
means of an indirect transmission method using a half-covered
PIPS detector [30]. Again, the electronic energy loss of hydrogen
ions was investigated experimentally by using Time-Of-Flight
Medium-Energy Ion Scattering (TOF-MEIS) method [31].

Despite the large number of studies performed on the stopping
power in plasmas, some of the contributing factors of electronic
stopping powers are not included yet. For some cases, quantum
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effects can contribute significantly to the electronic stopping
powers, especially for the cases when the de Broglie wavelength
of the charge carriers is frequently comparable to the dimension
of the system. In these cases, the electron gas can be partially
degenerate, often referred as fermi gas, is in the Fermi–Dirac distri-
bution instead of in the Maxwellian distribution as in classical gas-
es. The quantum hydrodynamic model (QHD) [33,34], a self-
consistent approach and a useful tool for describing the dynamics
of quantum plasmas, by solving the nonlinear Schrödinger-Poisson
or the Wigner-Poisson kinetic models, has been applied to investi-
gate the stopping power of electron gases at any degeneracy
[24,26]. However, in these works, only quantum diffraction and
quantum statistical effects are included. It is expected that new
features could appear with considering further quantum effects
in describing quantum plasmas, especially the spin effects.

Recently, the coupling of spin to quantum plasmons [35–40]
has attracted interest. It is possible to study such a system with
spin quantum hydrodynamic model (SQHD), which is developed
recently [35] by Marklund et al. They have shown an obvious spin
quantum effects [35] in dispersion relation and the linear response
of the quantum plasmas. With similar SQHD model, Brodin et al.
[36] has given a number of different models for treating spin and
magnetization effects in plasmas, wake fields were generated by
whistlers in spin quantum magnetoplasmas [37], Asenjo et al.
[38] investigated relativistic corrections to the Pauli Hamiltonian
in the context of a scalar kinetic theory for spin-1/2 quantum plas-
mas, Mahajan et al. [39] investigated vortical Dynamics of spin
quantum plasmas with Helicity conservation, and a spin-gradi-
ent-driven light amplification achieved in a quantum plasma
[40]. In particular, it has been reported that the spin-effects can
become important if magnetic field in the quantum plasma was
larger than 108 T [35,37], such a large magnetic field can exist in
the vicinity of pulsars and magnetars. However, the spin-effect
on the stopping power of quantum plasmas has not been examined
so far.

In above works, it is generally believed that spin effects in quan-
tum plasmas can never be observed in the experimental condi-
tions, since the strongest magnetic field achieved in labs is no
larger than 1000 T. In this work, we study the stopping power of
a completely degenerate 2DEG with spin effect for a charged parti-
cle moving parallel to the surface of the 2DEG, with the SQHD
model. For a applied magnetic field in a laboratory condition (sev-
eral tens of T), the spin effect obviously enhances or reduces the
stopping power dependant on spin-up or -down and negative stop-
ping power is obtained, showing another significant example of the
low-dimensional phenomenon. The outline of the paper is as fol-
lows. In Section 2, the SQHD model is derived from Pauli equation.
In Section 3, general expressions for the induced potential, the per-
turbed electron density and the stopping power with spin effect
are derived on the basis of SQHD equations, coupled with the Pois-
sons equation. In Section 4 we show numerical results of the stop-
ping power and the perturbed electron density, and present the
spin effect on them. Finally, a short summary is given in Section 5.
Gauss units will be adopted throughout the paper except in specific
definitions.

2. Spin quantum hydrodynamic model

By introducing the non-relativistic evolution of spin electrons,
as described by the two-component spinor w ¼ ffiffiffiffiffi

ne
p

expðiS=�hÞu
with the relation meue ¼ rSþ eA=c, it is possible to derive non-
relativistic quantum continuity and momentum equations for the
density ne and velocity ue, from the Pauli equation
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Here me is the electron mass, A is the vector potential, e is the mag-
nitude of the electron charge, lB ¼ e�h=2mec is the electron magnetic
moment, / is the electrostatic potential, r ¼ ðrx;ry;rzÞ are the

Pauli spin matrices, and we ¼
R

n
dn0

n0
dPen0

dn0
is the pressure-related effec-

tive potential. We take the z direction as the spin-quantization
(polarization) axis with u satisfying uþu ¼ 1. Thus, in an external
magnetic field B ¼ BzðzÞbz, since the spin vector Sz ¼ �h=2rz is a con-
served quantity in the Hamiltonian described above, which means
u ¼ 1=

ffiffiffi
2
p
ð1;0Þ for spin-up and u ¼ 1=

ffiffiffi
2
p
ð0;1Þ for spin-down, the

Pauli equation can be written for spin-up and spin-down electrons,
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where ‘‘�’’ represents spin-up and ‘‘þ’’ represents spin-down in the
term �lBBz. Separating Eq. (2) into their real and imaginary parts,
we indeed obtain the continuity equation,
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and the momentum-balance equation

@

@t
rSþ 1

2me
rðrSÞ2 ¼ er/� lBrBz �rwe

þ
�h2

2me
r 1ffiffiffiffiffi

ne
p r2 ffiffiffiffiffi

ne
p� �

; ð4Þ

with ‘‘�’’ representing spin-up and spin-down, respectively in the
term �lBrBz. Here we have used the Coulomb gauge r � A ¼ 0.

By using rS ¼ meue � eA=c and 1
2me
rðrSÞ2 ¼ meue � rueþ

e=c½ue � B�, the Eq. (4) can be simplified as
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Here we add the collision term �cmeue with the frequency c. On the
right side of Eq. (5), the first term is the electromagnetic force, the
second term is induced by the spin quantum effect (Zeeman ener-
gy), the third term is denoted as the quantum statistical pressure

force with we ¼ �h2ð3p2neÞ
2=3
=2me, the forth term is quantum Bohm

potential, and the last therm is collision force. Here the quantum
statistical pressure and the Bohm potential terms are the same as
in a non-spin QHD equations [34].

3. Application for a two-dimensional spin quantum electron gas

We consider a two-dimensional spin quantum electron gas
(2DSQEG) with spin quantum effect located in the plane ðz; xÞ
(y ¼ 0), which is composed of free electrons and motionless ions
with an equilibrium density ni0 ¼ ne0 ¼ n0 in a full degenerate case,
and the vacuum in the region y > 0 of a cartesian coordinate sys-
tem with R ¼ fx; y; zg. A particle of charge Z1e moves parallel to
the 2D plane ðz; xÞ along the z axis with a constant velocity
v ¼ vez and density next ¼ d r� vtð Þd y� y0ð Þ, where r ¼ rðz; xÞ and
y0 is the distance from the plane. Therefore, the homogeneous elec-
tron gas is perturbed by the charged particle and can be regarded
as a charged fluid with velocity ue r; tð Þ and density ne r; tð Þ. More-
over, in order to examine the spin effect on the stopping power
of the 2DSQEG, an external magnetic field B ¼ f0;0;Bzðz; tÞg is
applied to the electron gas with zero perpendicular-plane compo-
nent but nonzero in-plane component Bzðz; tÞ ¼ B0 exp
½iðk0z�x0tÞ�. Because only by considering the spin effect the
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