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a b s t r a c t

We discuss a class of exact finite energy solutions to the vacuum source-free Maxwell field equations as
models for multi- and single cycle laser pulses in classical interaction with relativistic charged test par-
ticles. These solutions are classified in terms of their chiral content based on their influence on particular
charge configurations in space. Such solutions offer a computationally efficient parameterization of com-
pact laser pulses used in laser-matter simulations and provide a potential means for experimentally
bounding the fundamental length scale in the generalized electrodynamics of Bopp, Landé and Podolsky.

� 2015 Elsevier B.V. All rights reserved.

Advances in laser technology have made possible the explo-
ration of physical processes on unprecedented temporal and spa-
tial scales. They have also opened up new possibilities for
accelerating charged particles using laser-matter interactions.
Multi- and single cycle high intensity (1010 � 1015 W cm�2) laser
pulses can be produced using Q-switching or mode-locking tech-
niques [1]. Such pulses can accelerate charged particles such as
electrons to relativistic speeds where radiation reaction and quan-
tum effects may influence their dynamics. Lower intensity pulses
have also been used as diagnostic tools for exploring the structure
of plasmas in various states [2,3]. In order to interpret experimen-
tal data involving classical laser interactions with both charged and
neutral matter, theoretical models [4–7] rely crucially on parame-
terizations of the electromagnetic fields in laser pulses, particularly
in situations where traditional formulations using monochromatic
or paraxial-beam approximations have limitations [8–10].

In this Letter we discuss a viable methodology for parameteriz-
ing a particular class of propagating solutions to the source free
classical Maxwell equations in vacuo that offers an efficient means
to explore the classical effects of compact laser pulses on free elec-
trons in dynamical regimes where quantum effects are absent. The
parameterization is based on a remarkable class of explicit solu-
tions of the scalar wave equation found by Ziolkowski [11–15]

following pioneering work by Brittingham [16]. Such solutions
can be used to construct classical Maxwell solutions with bounded
total electromagnetic energy and fields bounded in all three spatial
directions. With simple analytic structures their diffractive proper-
ties can be readily determined together with the behavior of
charged particle-pulse interactions over a broad parameter range
without recourse to expensive numerical computation. Finally,
we argue that such parameterizations can be used to find compact
finite energy solutions to other linear wave equations. This is illus-
trated by showing that the generalized theory of Bopp [17], Landé
[18] and Podolsky [19] admits such particular solutions that reduce
to the Maxwell solutions when a fundamental length parameter in
their theory tends to zero. Compact laser pulses in this theory
might be used to explore properties of the theory by searching
experimentally for bounds on this parameter.

If a complex scalar field a satisfies �a ¼ 0 on spacetime andPlm

is any covariantly constant (degree 2) anti-symmetric tensor field
on spacetime (i.e. Plm;d ¼ 0) for all l; m; d ¼ 0;1;2;3, then the
complex tensor field Flm ¼ @lAm � @mAl satisfies the source free
Maxwell equations in vacuo with:

Am ¼ @c aPlb
� �

�clbm

ffiffiffiffiffiffiffiffi
j g j

p
ð1Þ

where j g j is the determinant of the spacetime metric and �clbm

denotes the Levi–Civita alternating symbol. In the following g refers
to the Minkowski metric tensor field, in which case the components
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Plm can be used to encode three independent Hertz vector fields
and their duals1.

General solutions to �a ¼ 0 can be constructed by Fourier
analysis. In cylindrical polar Minkowski coordinates ft; r; z; hg,
axially symmetric solutions propagating along the z-axis have,
for z P 0, the double integral representation aðt; r; zÞ ¼R1
�1 dxe�ixteaðx; r; zÞ where:

eaðx; r; zÞ ¼
Z
0

x
c

k fxðkÞ J0ðkrÞ exp �iz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
c

� �2
� k2

r !
dk

þ
Z
x
c

1
k fxðkÞ J0ðkrÞ exp �z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x

c

� �2r !
dk

in terms of the zero order Bessel function and the speed of light in
vacuo c.

Conditions on the Fourier amplitudes fxðkÞ can be given so that
the Hertz procedure above gives rise to real singularity free
electromagnetic fields with finite total electromagnetic energy. A
particularly simple class of pulses that can be generated in this
way follows from the complex axi-symmetric scalar solution:

aðt; r; zÞ ¼ ‘20
r2 þ ðw1 þ iðz� ctÞÞ ðw2 � iðzþ ctÞÞ ð2Þ

where ‘0;w1;w2 are strictly positive (real) parameters with physical
dimensions of length. The relative sizes of w1 and w2 determine both
the direction of propagation along the z-axis of the dominant
maximum of the pulse profile and the number of spatial cycles in
its peak magnitude. When w1 � w2, the dominant maximum prop-
agates along the z-axis to the right. The parameter ‘0 determines the
magnitude of such a maximum. The structure of such solutions has
been extensively studied in [20,21] in conjunction with particular
choices of Plm together with generalizations discussed in [22,23].

In general the six anti-symmetric tensors with components
dl½cd

m
r� in a Minkowski Cartesian coordinate system are covariantly

constant and can be used to construct a complex eigen-basis
of antisymmetric chiral tensors Ps;j, with s 2 fCE;CMg and
j 2 f�1;0;1g, satisfying
OzP

s;j ¼ jPs;j ð3Þ
where the operator Oz represents h rotations about the z-axis gen-
erated by �i@h on tensors2. These in turn can be used to construct a
complex basis of chiral eigen-Maxwell tensor fields Fs;j. The index s
indicates that the CE (CM) chiral family contain electric (magnetic)
fields that are orthogonal to the z-axis when j ¼ 0. The chiral
eigen-fields Fs; 0 inherit the axial symmetry of aðt; r; zÞ while those
with j ¼ �1 do not. The directions of electric and magnetic fields
in any of these Maxwell solutions depend on their location in the
pulse and the concept of a pulse polarization is not strictly applica-
ble. The chiral content as defined here can be used in its place. Non-
chiral pulse configurations can be constructed by superpositionP

s

P
jF

s;j Cs;j with arbitrary complex coefficients Cs;j.
The energy, linear and angular momentum of the pulse in vacuo

can be calculated from the components Tlm of the Maxwell stress-
energy tensor Tlm ¼ � 1

4 glmF abF ab �FlaF a
m where Flm ¼ ReðFlmÞ. If

e and b denote time-dependent real electric and magnetic 3-vector
fields associated with any pulse solution, its total electromagnetic
energy J , for a fixed set of parameters and any z, is calculated from

J ¼ 1
l0

Z 1

�1
dt
Z
S
ðe� bÞ � dS ð4Þ

where S can be any plane with constant z ¼ z0 > 0. For spatially
compact pulse fields in vacuo this coincides with the total pulse
electromagnetic energy

E ¼
Z
V
qdV ¼

Z 1

�1
dz
Z 2p

0
dh
Z 1

0
rdr qðt; r; z; hÞ ð5Þ

where q � 1
2 �0 e � eþ b�b

l0

� �
is integrated over all space V. This fol-

lows since r � ðe� bÞ ¼ �l0 @t q. To correlate J with other laser
pulse properties and the choice of parameters, we bring the pulse
into classical interaction with one or more charged point particles.
The world-line of a single particle, parameterized in arbitrary coor-
dinate as xl ¼ nlðsÞ with a parameter s, is taken as a solution of the
coupled non-linear differential equations

AlðsÞ ¼ q
m0c2

FlmðnðsÞÞVmðsÞ ð6Þ

in terms of the particle charge q and rest mass m0, for some initial
conditions nð0Þ, Vð0Þ, where the particle 4-velocity satisfies
VmVm ¼ �1 and its 4-acceleration is expressed in terms of the
Christoffel symbols Cdb

l as Al ¼ @sVlðsÞ þ V dðsÞVbðsÞCdb
l ðnðsÞÞ. In

the following, radiation reaction and inter-particle forces are
assumed negligible. From the solution nðsÞ one can determine the
increase (or decrease) in the relativistic kinetic energy transferred
from the electromagnetic pulse to any particle and the nature of
its trajectory in the laboratory frame. This information can then
be used to correlate the dynamical properties of the interaction
with the laser pulse properties fixed by the parameters. To facilitate
this exercise, it proves important to reduce the above equations
of motion to dimensionless form and fix the physical dimensions
of the fields involved. The Minkowski metric tensor field g ¼
glmdx

l dxm (with glm ¼ diagð�1;1;1;1Þ) in inertial coordinates

x0 ¼ ct, x1 ¼ x, x2 ¼ y, x3 ¼ z) has SI physical dimensions ½L�2. The
SI dimension of electromagnetic quantities follows by assigning to

�0Flm dx
½ldxm� in any coordinate system the physical dimension of

electric charge. Furthermore, in terms of Minkowski polar coordi-
nates ft; r; z; hg, introduce (for ease of visualization) the dimension-
less coordinates fR ¼ r

U‘0
; T ¼ ct

‘0
; Z ¼ z

N‘0
g and dimensionless

parameters K;Wj ¼ wj

‘0
(j ¼ 1;2) where ½Wj� ¼ ½U� ¼ ½N� ¼ 1; ½‘0� ¼ ½L�.

Then with the dimensionless complex scalar field baðT;R; ZÞ ¼
aðt; r; zÞ and greek indices ranging over fT;R; Z; hg with �T;R;Z;h ¼ 1 ,
we write

Ad ¼ m0c2‘30K
q

@c ba bPlb

� �
�clbd

ffiffiffiffiffiffiffiffi
j g j

p
ð7Þ

for a choice of dimensionless covariantly constant tensor bPlb so
that ½�0Al dxl� has the physical dimension of electric charge and

J ¼
Z 1

�1
dT
Z 1

0
dR
Z 2p

0
dhPðT;R; Z; hÞ

E ¼
Z 1

�1
dZ ÊðT; ZÞ:

The parameter K controls the strength of all electric and mag-
netic fields in Fbd for fixed values of the parameters W1, W2, U, N
and the overall scale ‘0 will be fixed in terms of the total electro-
magnetic energy of the pulse. For a choice of such parameters
the real fields e and b enable one to calculate a numerical value
C such that J ¼ ‘0C. The diffraction of the pulse peak along the
z-axis can be used to define a pulse range relative to the maximum

of the pulse peak at z ¼ 0. To this end, the density bEðT; ZÞ defines

1 In the language of differential forms on Minkowski spacetime A ¼
HdðaPÞ; F ¼ dA where dHda ¼ 0, the 2-form P satisfies rP ¼ 0 and H denotes the
Hodge map associated with g.

2 In terms of the Lie derivative, Oz ¼ �iL@h and PCE;�1 ¼ dðx� iyÞ ^ dt; PCE;0 ¼
dz ^ dt;PCM;j ¼ HPCE;j where x ¼ r cosðhÞ; y ¼ r sinðhÞ
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