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a b s t r a c t

We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the
potential to enable attosecond light pulse generation. We present a new analytic solution of the electron’s
relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on
the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a
realistic electron bunch, with special attention to the correct initial values. These results show that the
radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of
sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light
pulses.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Attosecond physics [1–3] has been an established field of
research for more than a decade, providing revolutionary experi-
mental results on truly atomic time scales [4–6]. One of its most
important methods is a pump and probe experiment with single
attosecond light pulses, which can be routinely achieved with
high-order harmonic generation (HHG) on noble gas atoms by suit-
able few-cycle laser pulses. However, gas HHG has well-known
limitations and thus new methods capable to produce bright
attosecond (or shorter) light pulses are of great importance to this
research field.

The interaction of a relativistic electron beam with an intense
laser pulse, i.e. nonlinear Thomson scattering [7–9], is a promising
method for the generation of high-order harmonics and potentially
attosecond light pulses. In the context of nonlinear Thomson scat-
tering [10,11], the emitted power spectrum is in the focus of most
of the publications, for which there are well-known analytical [11]
and numerical [12] calculations. Chen et. al. also pointed out that,
in case of a few-cycle laser pulse, the emission spectrum should be
calculated with the formula involving the acceleration of the elec-
tron [13,14].

The equations of motion of a single relativistic electron in an
electromagnetic plane wave in a vacuum have well-known exact
solutions.. However, the generalization of this solution for several

electrons interacting with a short laser pulse needs special atten-
tion, in particular, regarding the correct initial conditions. The
importance of space-like initial data was first highlighted in
an earlier work of one of the authors [15]. In the present paper,
we address this problem in the framework of classical electrody-
namics, based on [15], with a modified configuration. We demon-
strate that the collectively emitted amplitude and phase spectrum
allows to create a single attosecond pulse with the help of proper
filtering.

In Section 2, we recall the classical equations of motion for a
single electron in head-on collision with a strong ultrashort laser
pulse and give their analytical solution assuming laser pulses with
a sudden switch-on or a sine-squared envelope. Then we deter-
mine the initial values of these solutions from the usual (spatially
separated) initial conditions explicitly. In Section 3, we calculate
and present the amplitude and phase spectra of the emitted radia-
tion and an attosecond pulse shape corresponding to a filtered
spectral region. Finally, we summarize our results and conclusions
in Section 4.

2. Equation of motion, electron trajectories

We consider a classical relativistic electron in head-on collision
with a strong ultrashort laser pulse, modeled as an electromagnetic
plane wave traveling in the z-direction, with linear polarization
along the x-direction:

E Hð Þ ¼ E0êxf Hð Þ sin xLHþu0ð Þ; ð1Þ

http://dx.doi.org/10.1016/j.nimb.2015.10.050
0168-583X/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13,
H-6720 Szeged, Hungary.

Nuclear Instruments and Methods in Physics Research B 369 (2016) 45–49

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research B

journal homepage: www.elsevier .com/locate /n imb

http://crossmark.crossref.org/dialog/?doi=10.1016/j.nimb.2015.10.050&domain=pdf
http://dx.doi.org/10.1016/j.nimb.2015.10.050
http://dx.doi.org/10.1016/j.nimb.2015.10.050
http://www.sciencedirect.com/science/journal/0168583X
http://www.elsevier.com/locate/nimb


where

H ¼ t � z
c
; ð2Þ

denotes the argument of the plane wave, E0 is the amplitude of the
electric field strength and xL is the central frequency of the plane
wave. The f Hð Þ represents the pulse envelope function. Using
B ¼ nL � E, where nL is the unit vector pointing in the positive
z-direction, the Newton–Lorentz equations for the electron of
charge e and mass m are the following:

m
du
ds

¼ e
c

u0E Hð Þ þ nL u � E Hð Þð Þ � E Hð Þ nL � uð Þ� �
; ð3Þ

m
du0

ds
¼ e

c
E � u; ð4Þ

where u0;u
� � ¼ cc; cvð Þ is the four-velocity of the electron,

c � 1� vj j2=c2
� ��1=2

is the Lorentz-factor and ds ¼ dt=c is the

proper time of the electron. Comparing the z-component of (3) with
(4), it follows that u0 � u3 is a constant of motion:

u0 � u3 ¼ d
ds

ct � zð Þ ¼ c
dH
ds

¼ ac; ð5Þ

where a ¼ cð1� vz=cÞ denotes a dimensionless constant which is
determined by the initial conditions. The connection (5) enables
the replacement of the derivatives with respect to the proper time
s by derivatives with respect to the wave argumentH in (3) and (4),
which yields the following equations

ma
d2x

dH2 ¼ eE Hð Þ; ð6Þ

d2y

dH2 ¼ 0; ð7Þ

d2z

dH2 ¼ 1
2c

d
dH

dx
dH

� 	2

; ð8Þ

d2 ctð Þ
dH2 ¼ 1

2c
d
dH

dx
dH

� 	2

: ð9Þ

2.1. Solution for a laser pulse with sudden switch-on

The equations of motion (6)–(9) have the following analytic
solution in the case of a laser pulse which is switched on suddenly
at H ¼ H0:

x Hð Þ ¼ x H0ð Þ þ fWx0 H�H0ð Þ � cm
x

sin HxLð Þ � sin H0xLð Þð Þ; ð10Þ
y Hð Þ ¼ y H0ð Þ þWy0 H�H0ð Þ; ð11Þ
z Hð Þ ¼ z H0ð Þ þ fWz0 H�H0ð Þ þ fWx0m cos H0xLð Þ H�H0ð Þ

� fWx0

m
xL

sin HxLð Þ � sin H0xLð Þð Þ

þ cm2

8xL
sin 2HxLð Þ � sin 2H0xLð Þð Þ; ð12Þ

ct Hð Þ ¼ ct H0ð Þ þ fWt0 H�H0ð Þ þ fWx0m cos H0xLð Þ H�H0ð Þ
� fWx0

m
xL

sin HxLð Þ � sin H0xLð Þð Þ

þ cm2

8xL
sin 2HxLð Þ � sin 2H0xLð Þð Þ; ð13Þ

where the following quantities are introducedfWx0 ¼ Wx0 þ cm cos H0xLð Þ; ð14Þ
fWz0 ¼ Wz0 �

cm2

4
cos 2H0xLð Þ; ð15Þ

fWt0 ¼ Wt0 �
cm2

4
cos 2H0xLð Þ; ð16Þ

with

Wt H0ð Þ;W H0ð Þf g ¼ Wt0 ;Wx0 ;Wy0 ;Wz0


 �
¼ d ctð Þ

dH
;
dx
dH

;
dy
dH

;
dz
dH

� ����
H¼H0

ð17Þ

being determined by the true initial values, to be discussed in Sec-
tion 2.3. In these formulae, the following effective intensity param-
eter is used:

m ¼ l
a
; ð18Þ

which is defined in terms of the general intensity parameter

l ¼ ej jE0

mcx
: ð19Þ

For a monochromatic plane wave, the value of l can be easily
calculated with the following formula:

l ¼ 8:5 � 10�10k lm½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I0

W
cm2

� �s
: ð20Þ

2.2. Solution for a laser pulse with sine-squared envelope

Now we assume a few cycle laser pulse with a sine-squared
envelope function as:

f ðHÞ ¼ sin2ðXHÞ; 0 < H < p=X;

0; otherwise;

(
ð21Þ

then u0 in (1) is in fact related to the usual carrier envelope phase
difference with a shift of p=2. The equations of motion (6)–(9) have
new analytic solutions for these kind of laser pulses, regardless of
the value of X and u0. Here we present such a solution in the case
of a 3-cycle pulse (i.e. X ¼ x=6) with u0 ¼ p=2 (called usually
cosine pulse in the context of few-cycle pulses):

x Hð Þ ¼x H0ð Þ þWx0 � H�H0ð Þ

þ cm
16xL

X4
n¼2

3an
n

cos
nHxL

3

� 	
� cos

nH0xL

3

� 	� �
; ð22Þ

y Hð Þ ¼ y H0ð Þ þWy0 H�H0ð Þ; ð23Þ

z Hð Þ ¼z H0ð Þ þWz0 � H�H0ð Þ

þ m
16

Wx0 � H�H0ð Þ �
X4
n¼2

an sin
nH0xL

3

� 	

þ m �Wx0

16x
X4
n¼2

3an
n

cos
nHxL

3

� 	
� cos

nH0xL

3

� 	� �

� cm2

32xL

X8
n¼1

3bn

n
sin

nHxL

3

� 	
� sin

nH0xL

3

� 	� �
; ð24Þ

ct Hð Þ ¼ct H0ð Þ þWt0 � H�H0ð Þ

þ m
16

Wx0 � H�H0ð Þ �
X4
n¼2

an sin
nH0xL

3

� 	

þ m �Wx0

16x
X4
n¼2

3an
n

cos
nHxL

3

� 	
� cos

nH0xL

3

� 	� �

� cm2

32xL

X8
n¼1

3bn

n
sin

nHxL

3

� 	
� sin

nH0xL

3

� 	� �
; ð25Þ

where the following quantities are introduced:

Wx0 ¼ Wx0 þ
cm
16

X4
n¼2

an sin
nH0xL

3

� 	
; ð26Þ

46 S. Hack et al. / Nuclear Instruments and Methods in Physics Research B 369 (2016) 45–49



Download English Version:

https://daneshyari.com/en/article/1680314

Download Persian Version:

https://daneshyari.com/article/1680314

Daneshyari.com

https://daneshyari.com/en/article/1680314
https://daneshyari.com/article/1680314
https://daneshyari.com

