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a b s t r a c t

Infrared singularities in massless gauge theories are known since the foundation of quantum field theo-
ries. The root of this problem can be tracked back to the very definition of these long-range interacting
theories such as QED. It can be shown that singularities are caused by the massless degrees of freedom
(i.e. the photons in the case of QED). In the Bloch–Nordsieck model the absence of the infrared catastro-
phe can be shown exactly by the complete summation of the radiative corrections. In this paper we will
give the idea of the derivation of the Bloch–Nordsieck propagators, that describes the infrared structure
of the electron propagation, at zero and finite temperatures. Some ideas of the possible applications are
also mentioned.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The infrared (IR) limit of quantum electrodynamics (QED) is
known to be plagued by singularities caused by the photons. This
phenomenon is known as the infrared catastrophe, and it can be
found in any quantum field theory (QFT) which involves massless
fields. The development of QFTs started around 1930 with QED,
therefore, in most of the cases the subjects of the computations
were electromagnetic quantities. The methods used for the calcu-
lations were mostly the direct extension of the PT from quantum
mechanics. Physicists back then, who were doing computations
in QED, immediately faced IR divergences when calculating first
order perturbative corrections to the Bremsstrahlung process,
due to the low frequency photon contributions. The core of the
problem lays in the fundamental definition of QED, namely, that
we assume the existence of a free theory, i.e. the existence of
asymptotic states. However, such states are difficult to define in
a theory where we have long-range interactions. As a consequence,
one cannot truly define the asymptotic states described by the Fock
representation of free theory Hilbert space, on which the PT is per-
formed. Thus, we need to search for a non-perturbative solution to
prevent these difficulties. An alternative approach to this problem
was provided by Bloch and Nordsieck in 1937 in their remarkable
work on treating the infrared problem [1]. The divergencies are
caused by the fact that in a scattering process an infinite amount
of long wavelength photons are emitted, and these low energy
excitations of the photon field are always present around the elec-
tron in the form of a ‘‘photon cloud”. This shows us essentially that

the observed particle is in fact very different from the one we call
the bare particle: they can be considered as dressed ‘‘quasi parti-
cle” objects whose interactions cannot be described through PT
entirely. In this paper, we will show the emergence of the infrared
catastrophe and then we will introduce the Bloch–Nordsieck (BN)
model, which was designed in order to imitate the low energy
regime of QED. We will discuss the breakdown of the PT due to
the IR catastrophe, however, it is possible to obtain the exact full
solution by using the Ward–Takahashi identities embedded into
the Dyson–Schwinger (DS) equation.

2. The infrared catastrophe

The easiest way to demonstrate the IR catastrophe is the follow-
ing. Suppose that EðxÞ is a finite amount of electromagnetic energy
emitted by an accelerated charge in the frequency band
½x;xþ dx�. Each photon carries an energy of �hx, hence the aver-
age number of emitted photons in this band is �n ¼ EðxÞ=�hx. If we
take the limit x! 0 the average number of photons will diverge
provided that limx!0EðxÞ– 0 (which is fulfilled). Thus we can
see that an infinite number of soft photons are present at any scat-
tering process (c.f. [2–4]). In the following we will apply the con-
vention used by the particle physics community, i.e. �h ¼ c ¼ 1 in
the further computations.

We should get the same result using quantum computations,
however, relying on PT gives different result: already in the first
order of the PT the probability of emitting one soft photon in a
scattering process will diverge logarithmically [2,3]. This is in com-
plete contradiction that we have found with the semi-classical line
of thought a few lines above. In fact, it turns out it is not enough to
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take into account the tree level diagrams but we will also need to
include the virtual corrections to cancel out these infrared diver-
gencies. This can be done in all orders of PT and by summing up
these corrections (combining real and virtual corrections) to infi-
nite order we can obtain a well defined probability measure. More
precisely, it can be shown (c.f. [4]) that the probability of emitting
n soft photons in the process has the form

PDE;xmin
ðnÞ ¼ hp0 Sj jpij j2 1

n!
2a
3p

�q2

m2 ln
DE
xmin

� �n
e�

2a
3p

q2

m2 ln DE
xmin : ð1Þ

Here the first factor is the absolute square of the scattering ampli-
tude without radiation emitted, a is the fine structure constant
(a ¼ e2=4p, with e being the electric charge); m2 and q2 is the elec-
tron mass and the transferred four momentum q ¼ p� p0 (and
�q2 > 0), respectively. There are two energy scales that have been
introduced: xmin and DE. The former is an artificial IR regulator
(‘‘mass” for the photon field) and the second is the resolution of
the detector that performs the measuring in the process: photons
having energy lower than DE are not being detected at all. Hence,
we only consider the interval where the photons energy are
x 2 ½xmin;DE�. However, (1) will give 0 for any finite n while taking
the artificial mass of the photon to zero as we should:

lim
xmin!0

PDE;xmin
ðnÞ ¼ 0: ð2Þ

This means that the probability of emitting any finite number of
soft photons during the scattering process is zero. On the contrary:
if we perform a summation over all possible photon numbers that
can be emitted we will get a finite result1

PðDEÞ ¼
X1
n¼0

PDEðnÞ ¼ hp0 Sj jpij j2e�
2a
p

�q2

m2 lnm
DE: ð4Þ

As we can see, indeed, we obtained a finite probability for the
process of infinite emitted photons from the quantum computa-
tion. However, we still need to keep the sensitivity of the detector
finite in order to get this result. Although theoretically it is possible
to take the limit DE ! 0, however, in reality it will never happen
since there is no such as a detector with perfect resolution.

3. The soft photon contribution to the electron structure: the
Bloch–Nordsieck model

The BN model was made to give an insight in the analytic struc-
ture of the cancellation of the infinities in the IR regime. Investigat-
ing this model will lead us to the exact result of the propagator of
the fermion which is surrounded by a cloud of photons. Although
the result is known long ago [1], and it can be considered as a text-
book material [5], we will sketch the derivation used in [6] which
can be extended to finite temperatures the most easily [7]. The
main idea of the BN model, that simplifies the theory tremen-
dously, is to replace the gamma matrices cl by a four-vector ul
that can be considered as the four-velocity of the fermion, and
hence the fermion field is represented by a scalar field. This simpli-
fication is well justified in the IR regime: the soft photons which
take part in the interaction will not have enough energy for pair
production, moreover, not even enough to flip the spin of the

electron. It implies that the photon propagator will not have any
corrections, i.e. the exact photon propagator is the free one in this
model. Thus the Lagrangian reads

L ¼ �1
4
FlmF

lm þ �WðiulDl �mÞW; iDl ¼ i@l � eAl; Flm

¼ @lAm � @mAl; ð5Þ

where W and Al is the fermion and photon field, respectively. The
fermionic part of the Lagrangian is Lorentz-covariant, therefore
we can relate the results with different ul choice by Lorentz
transformation. This makes possible to work with u ¼ ðu0;0;0;0Þ
without loss of generality. In fact, we can perform a Lorentz-
transformation where Ku ¼ ðu0;0;0; 0Þ. Since ul is a four-velocity
then u0 ¼ 1; if it is of the form u ¼ ð1;vÞ, then it is u0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
.

After rescaling the field as W ! W=
ffiffiffiffiffi
u0

p
and the mass as m ! u0m,

the Lagrangian reads

L ¼ �1
4
FlmF

lm þ �WðiD0 �mÞW: ð6Þ

Using this reference frame simplifies the calculations [6]. If
necessary, the complete u dependence can be recovered easily,
however, at finite temperatures we need to use numerics if we
want to switch to another reference frame due to the lack of the
Lorentz symmetry.

3.1. The Bloch–Nordsieck model at T ¼ 0

In order to derive the dressed fermionic propagator, we are
going to use a system of self-consistent equations which involves
the DS equation, Dyson’s series and theWard–Takahashi identities.
We will begin with the DS equation; it reads in real and momen-
tum space, respectively:

Rðx� yÞ ¼ �ie2
Z

d4w
Z

d4zGðx�wÞulGlmðx� zÞCmðz;w; yÞ;

RðpÞ ¼ �ie2
Z

d4k

ð2pÞ4
Gðp� kÞulGlmðkÞCmðk; p� k; pÞ;

ð7Þ

where Glm is the photon propagator, G is the fermion propagator and
Cl is the vertex function. The diagrammatic representation of
Eq. (7) can be seen in Fig. 1. The DS equation describes the self-
energy of the fermion. To obtain the full expression, we need to
treat G as the exact fermion propagator and keep the photon prop-
agator undressed (i.e. on tree-level), which coincides with the exact
one in the framework of the BN model. The vertex correction is
composed from both propagators but it can be simplified using
the Ward–Takahashi relations, as we will see.

Now that we have the formula for the self-energy, we need
another equation which expresses the fermion propagator as a
function of the self-energy. For this purpose Dyson’s series can
be used [2]. It can be shown that summing up all the radiative

Fig. 1. The diagrammatic representation of the Dyson–Schwinger equation. The
double line is for the dressed fermion, the wavy line is for the photon propagator.
The black blob denotes the full vertex function. The bold letters are for space–time
points and the Greek letters denote the Lorentz indices. At finite temperatures we
also need to consider the regular letters which are the Keldysh indices.

1 This result can be found in [4] where functional techniques are used, however, in
[2] the following formula is given for the differential cross section:

dr
dX

¼ dr
dX

� �
0
e�

a
p ln

�q2

m2 ln�q2

DE2 : ð3Þ

Here the first factor corresponds to the hard scattering and in the exponent we can
find the famous Sudakov double logarithm. The difference between the results in [2,4]
originates from the different approximations that are used.
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