
Synchronous parallel Kinetic Monte Carlo: Implementation and results
for object and lattice approaches

Ignacio Martin-Bragado a,⇑, J. Abujas b, P.L. Galindo b, J. Pizarro b

a IMDEA Materials Institute, C/ Eric Kandel 2, 28906 Getafe, Madrid, Spain
b Departamento de Ingeniería Informática, Universidad de Cádiz, Puerto Real, Cádiz, Spain

a r t i c l e i n f o

Article history:
Received 20 June 2014
Received in revised form 9 December 2014
Accepted 10 December 2014
Available online 14 February 2015

Keywords:
Kinetic Monte Carlo
Parallel
Object
Lattice
Simulation

a b s t r a c t

An adaptation of the synchronous parallel Kinetic Monte Carlo (spKMC) algorithm developed by Martinez
et al. (2008) to the existing KMC code MMonCa (Martin-Bragado et al. 2013) is presented in this work. Two
cases, general enough to provide an idea of the current state-of-the-art in parallel KMC, are presented:
Object KMC simulations of the evolution of damage in irradiated iron, and Lattice KMC simulations of
epitaxial regrowth of amorphized silicon. The results allow us to state that (a) the parallel overhead is
critical, and severely degrades the performance of the simulator when it is comparable to the CPU time
consumed per event, (b) the balance between domains is important, but not critical, (c) the algorithm and
its implementation are correct and (d) further improvements are needed for spKMC to become a general,
all-working solution for KMC simulations.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Kinetic Monte Carlo (KMC) algorithm has been widely used
in many fields of computational physics with notable success since
its inception [1]. Although there are several methods called Kinetic
Monte Carlo, here we want to focus in two main ones: Object and
Lattice Kinetic Monte Carlo.

Object KMC focuses only on the defects included in the system
by discarding the lattice and following only some ‘‘objects’’ that
mimic the defect behavior. It is mainly used to study the evolution
of crystalline systems under irradiation, including metals (iron,
tungsten, copper [2]), and semiconductors (silicon [3], germanium,
silicon carbide, gallium arsenide).

Lattice KMC maintains the lattice of the system and uses it to
follow the evolution of defects in the solid, for instance vacancy
diffusion [4]. Another recent application of Lattice KMC is the
simulation of epitaxial growth, either as the result of an internal
phase transformation [5] or an external deposition [6].

Given the widespread use and power of KMC, it is understand-
able that a big effort towards its parallelization and scalability is
being done. Such an effort tries to overcome one of the main
limitations of KMC: it is computationally expensive to simulate
realistic system sizes and times. Unfortunately KMC, in contrast
to other algorithms (for instance Molecular Dynamics), is highly

asynchronous, and thus a simple parallelization provided by
domain splitting is not straightforward to implement and might
even produce the wrong physical evolution of the system under
consideration.

To overcome such limitation, several approaches have been
taken. One is the implementation of asynchronous kinetics, with
complex algorithms that accept or reject events based on domain
correlation schemes [7–9]. A different approach is to advance time
synchronously and to avoid boundary errors produce by neighbor-
ing threads running simultaneously [10,11].

Most recently, a synchronous parallel Kinetic Monte Carlo
(spKMC) algorithm based on a generalization of the rejection-free
n-fold method [1] has been proposed for continuum diffusion–
reaction systems [12] and 3D Ising systems [13]. A question mark
remains on whether such an algorithm can be successfully applied
to a general OKMC or LKMC problem, with several objects and
reactions, where high inhomogeneities are to be expected, and
thus what is the impact of parallelization on existing KMC codes
for damage evolution or crystal growth. This is the goal of this
work, where we have taken an existing serial OKMC and LKMC
code, MMonCa [14], applied and adapted the synchronous parallel
KMC algorithm to it using OpenMP under the shared memory
parallel paradigm, and used the parallel version in two problems
that, instead of having been chosen to show strong parallelism,
are of interest for computational physicists and engineers and
the results of which have already been published [14,15]. This
allows us to perform a fair comparison and assessment of the
current state-of-the-art of parallelism in KMC for material sciences.

http://dx.doi.org/10.1016/j.nimb.2014.12.081
0168-583X/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +34 917871881; fax: +34 915503047.
E-mail address: ignacio.martin@imdea.org (I. Martin-Bragado).

Nuclear Instruments and Methods in Physics Research B 352 (2015) 27–30

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research B

journal homepage: www.elsevier .com/locate /n imb

http://crossmark.crossref.org/dialog/?doi=10.1016/j.nimb.2014.12.081&domain=pdf
http://dx.doi.org/10.1016/j.nimb.2014.12.081
mailto:ignacio.martin@imdea.org
http://dx.doi.org/10.1016/j.nimb.2014.12.081
http://www.sciencedirect.com/science/journal/0168583X
http://www.elsevier.com/locate/nimb

2. Model and implementation

This section explains the model and implementation used to
transform the serial KMC algorithm into a parallel one. For details
on the particular physical models for LKMC or OKMC previous pub-
lications can be read [14,15]. Our parallelization scheme is heavily
based on the synchronous parallel KMC algorithm of Martínez et al.
detailed in Ref. [13]. Such algorithm and our adaptation to MMonCa

and to the shared memory parallel paradigm can be split in two
parts: (a) the management of time, i.e., the synchronicity, and (b)
the management of boundary conflicts.

2.1. Time tracking

The time tracking implementation is similar to the proposed in
Ref. [12], which is an adaptation of the Gillespie KMC formulation
[16]. It is written generically for a system with m domains,
(Xi; 0 6 i < m), each of them divided in p sub-domains or ‘‘colors’’
(see Fig. 1 and further explanation in Section 2.2). In our imple-
mentation, each domain is processed by a different thread, while
the total memory is shared and accessible by all of them.

1. The total cumulative rate for each sub-domain i, having ni

events to simulate, is built as Ri ¼
Pni

j rij.
2. A maximum of all the cumulative rates is computed:

Rmax P maxm
i¼0Ri.

3. Null events rate are assigned to each sub-domain:
rnull

i ¼ Rmax � Ri.
4. A random number is used to choose one, and only one, ‘‘color’’

for all domains.
5. For each sub-domain of the right color, one event is chosen pro-

portionally to its rate and executed. This is the part done in
parallel.

6. Time is advanced by Dt ¼ logð1=sÞ=ðp � RmaxÞ, being s 2 ð0;1Þ a
random number.

7. The algorithm is repeated until the requested simulated time is
reached.

The logic behind this algorithm is that the addition of the null
events makes all sub-domains equiprobable with a total cumula-
tive rate of p � Rmax, thus allowing us to pick up which one is to
be executed with a linearly distributed random number.

2.2. Boundary conflicts

The solution of boundary conflicts when particles interact
across domain boundaries is implemented using the chessboard
sub-lattice technique for KMC proposed by Shim and Amar [10],
but in contrast with previous implementations and as shown in
Fig. 1, we split the space between two adjacent domains in at least
three sub-domains. In principle, the isolation produced by one sub-
domain should be enough to prevent boundary conflicts of physical

nature, i.e., to decide what happens when two neighboring parti-
cles interact across the boundary by removing the possibility of
adjacent sub-domains to have contradictory events performed.
Nevertheless, this mechanism alone is not enough to avoid mem-
opry access related problems in our shared memory paradigm.
Since in our approach the position of each particle determines
the region where it belongs, and each region has a block of memory
to be accessed, conflicts can arise when particles from different
threads enter the same region, and consequently two threads try
to write into the same memory block at the same time. This can
be solved by implementing locks and semaphores that control
and put order to shared regions accesses, but that implies an
increase in code complexity plus an extra synchronization over-
head. We have taken the alternate, simpler approach, of having
three sub-domains per domain to assure that, even if diffusing par-
ticles are crossing to a neighboring boundary, two threads will
never access the same region at the same time, which translates
under the correct implementation in threads never accessing the
same memory at the same time, and thus requiring no thread syn-
chronization or boundary communication of any type.

3. Results and discussion

3.1. Object Kinetic Monte Carlo

The benchmark chosen for the parallel Object Kinetic Monte
Carlo simulations has been the reproduction of the abrupt changes
in electrical resistivity studied in Ref. [17] and simulated in Refs.
[18,14]. In particular, we will compare simulated results between
our serial code [14] and our parallel implementation shown in this
work. An isochronal annealing of 2� 10�4 dpa irradiated a-iron has
been simulated in a box sized 143:5� 143:5� 143:5 nm3 using
two different random seeds. Serial versions of the code, together
with parallel simulations using 1, 2, 4, 6 and 8 threads have been
simulated. The simulation results for the evolution in time and
its first derivative of the total number of defects can be observed
in Fig. 2. The similar shape of all the curves between them and with
the previous serial implementation validates the parallel
implementation.

Fig. 3 shows the performance of the OKMC parallelization, by
comparing the total CPU time for the different cases explained

(a) (b)

O
K

O
K

C
on
fl
ic
t!

Fig. 1. Schematic representation of the subdivision of domains. Each thread
executes the same color (red in this figure). In (a), the parallel diffusion of particles
inside the same area is prone to generate memory conflicts. This is solved in (b)
increasing the number of subdivisions. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

103

104

 100 150 200 250

N
um

be
r o

f d
ef

ec
ts

T(K)

s. 1
s. 2
s. 4
s. 6
s. 8

p. 1
p. 2
p. 4
p. 6
p. 8

100

101

102

103

 100 150 200 250

D
er

iv
at

iv
e

T(K)

Fig. 2. Comparison of damage evolution and its first derivative for the Object KMC
serial binary (s) and the parallel binary (p) with 1, 2, 4, 6 and 8 threads. The
agreement validates the implementation.

28 I. Martin-Bragado et al. / Nuclear Instruments and Methods in Physics Research B 352 (2015) 27–30

Download English Version:

https://daneshyari.com/en/article/1680499

Download Persian Version:

https://daneshyari.com/article/1680499

Daneshyari.com

https://daneshyari.com/en/article/1680499
https://daneshyari.com/article/1680499
https://daneshyari.com

