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a b s t r a c t

A phase-field method is applied to compute the sink strength of dislocation loops in irradiated materials.
This model enables to consider various sink geometries and long range elastic interactions between
dislocation loops and migrating defects. Our results show that the analytical solutions underestimate
the sink strength of loops. In addition, the influence of elasticity on sink strength increases with the loop
radius. Finally, there is a significant effect of the dislocation line configuration enhanced by elasticity.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

While dislocation loops are commonly observed defects in irra-
diated metals, their point defect (PD) sink strengths have been
much less studied than straight dislocations, due to their 3D nat-
ure. In order to better understand microstructure evolution in irra-
diated metals, dislocation loops should benefit from the same
efforts as those dedicated to straight dislocation lines.

Straight dislocations have been studied for more than 50 years.
The first models described the dislocation as a cylindrical PD sink
embedded in a sink-free volume of the same shape (the ‘‘hollow
cylinder model’’), which allowed to propose several analytical solu-
tions, depending on boundary conditions (see [1] for a review): (i)
the average PD concentration is maintained constant at the border
of the sink-free volume (Laplace model), (ii) the PD flux at the bor-
der of the sink-free region is set at zero, PD creation by irradiation
is modelled by a volumetric source term in the diffusion equation,
and the sink strength is deduced from the outer border concentra-
tion (Poisson model), (iii) the same assumptions as in (ii) are used,
but the average concentration in the sink-free volume is consid-
ered for the sink strength calculation, instead of the outer border
concentration (Wiedersich model). In the models described by
Nichols [1], the effect of the dislocation stress field on PD diffusion
was neglected. As the elastic drift is thought to be one of the

driving forces for swelling in irradiated fcc crystals [2,3], the elastic
interaction between the dislocation line and PDs has been first
taken into account assuming that the crystal properties were iso-
tropic with PDs modelled as dilatation centres [4–9]. More recent
works considered the influence of the anisotropy of the crystal
and of the PD shape in its equilibrium [10] and saddle point config-
uration [11–16] on sink strength. Most of those studies are limited
to straight dislocations, which can be simulated in 2D, unlike dis-
location loops. As a consequence, the calculation of the PD flux to
the loops is much more challenging.

Seeger et al. [17] proposed a solution of the Laplace equation for
the toroidal sink, isolated in an infinite medium. Jansson et al. [18]
computed the sink strength of dislocation loops by means of an
Object Kinetic Monte Carlo (OKMC) method [19]. This technique
allows to simulate realistic irradiation conditions and to investi-
gate the effect of diffusion anisotropy, but the elastic interactions
were not considered in their work. Whereas the stress field gener-
ated by an isolated straight dislocation can be analytically obtained
in some specific cases [20], the same work remains a tricky issue
for dislocation loops. In most analytical works, a solution to this
problem is proposed under the assumption that the loop is elasti-
cally equivalent to a spherical sink [21,22]. The true toroidal geom-
etry of the loop has been numerically considered in the work of
Dubinko et al. [8]. In particular, they showed that the choice of
the sink-free volume shape can strongly affect the calculated sink
strengths. This illustrates the interest of considering numerical
methods with no topological constraints.

http://dx.doi.org/10.1016/j.nimb.2015.01.006
0168-583X/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +33 (0) 320 33 62 25; fax: +33 (0) 320 43 65 91.
E-mail addresses: Hadrien.Rouchette@ed.univ-lille1.fr (H. Rouchette), Ludovic.

Thuinet@univ-lille1.fr (L. Thuinet).

Nuclear Instruments and Methods in Physics Research B 352 (2015) 31–35

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research B

journal homepage: www.elsevier .com/locate /n imb

http://crossmark.crossref.org/dialog/?doi=10.1016/j.nimb.2015.01.006&domain=pdf
http://dx.doi.org/10.1016/j.nimb.2015.01.006
mailto:Hadrien.Rouchette@ed.univ-lille1.fr
mailto:Ludovic.Thuinet@univ-lille1.fr
mailto:Ludovic.Thuinet@univ-lille1.fr
http://dx.doi.org/10.1016/j.nimb.2015.01.006
http://www.sciencedirect.com/science/journal/0168583X
http://www.elsevier.com/locate/nimb


Most recent numerical techniques are still limited to simplify-
ing assumptions (Laplace boundary conditions) or must be coupled
with other models to provide the PD elastic potential around the
dislocation. Rouchette et al. [9] developed a numerical phase-field
(PF) method free of any topological limitations that enables to con-
sider the migration of PDs in a dislocation network in realistic con-
ditions. Their technique, based on the microelasticity theory [23–
25], naturally takes into account the long range interaction
between the microstructure and the migrating defects, provided
that the following input parameters are known: the PD stress-free
strain tensor (obtained by ab initio calculations), the Burgers vector
and the vector normal to the habit plane of the dislocation.

While this method was first applied to straight dislocations
[9,26], the goal of this paper is to show that the PF model can be
easily generalised to complex microstructures, such as dislocation
loops, to calculate sink strengths. The article is then organised as
follows. Section 2 briefly recalls the PF methodology used to calcu-
late sink strengths and a proper definition of the order parameters
is proposed for the case of dislocation loops. The PF results pre-
sented in Section 3 allow to discuss the validity of the previous
analytical models. Moreover, since the stress field is strongly
dependent on the dislocation configuration (straight line vs loop),
the elastic effect on sink strength is quantified in both cases and
compared, a task that can be directly performed with the PF model.

2. Methodology

In this section, a brief summary of the main assumptions and
basic methodological issues of the PF model are given. All the
details can be found in [9]. The model solves the following kinetic
equation in presence of dislocation lines that generate an elastic
field and act as perfect sinks:

@X
@t
¼ Dr2X þ D

kBT
$ X$lel

� �
þ K0 � Jabs ð1Þ

with X the PD site fraction, D the diffusion coefficient (taken isotro-
pic in this work), lel the elastic potential, K0 the PD generation rate
and Jabs the PD absorption flux at the sink. Its expression is given by
Eq. (6) and is justified below. In this paper, we extended the method
in 3D in order to treat dislocation loops. In the following, we define
the order parameters for that case, and recall their part in the
model.

In Eq. (1), the calculation of the elastic potential lel is based on
the microelasticity theory [23], which consists in associating to
each defect the relevant eigenstrain or stress-free strain. By means
of eigenstrains and order parameters, elastic interactions between
defects are naturally taken into account whatever their morpho-
logical configuration. According to Nabarro [20], one dislocation
loop is elastically equivalent to the platelet of thickness a0 it
encompasses and characterised by a stress-free strain �d0

ij defined
as:

�d0
ij ¼

1
2a0
ðbinj þ bjniÞ; ð2Þ

with bi and nj respectively the ith component of the Burgers vector
b and the jth component of the unit vector n normal to the habit
plane of the loop, and a0 the cell size of the calculation domain.
Owing to that equivalence, a loop is modelled by means of the order
parameter gðrÞ equal to 1 inside the platelet and 0 outside. In our
case, a disc-shaped platelet of radius rL is considered, hence, the dis-
location is a circular loop (see Fig. 1a). The local stress-free strain
due to the loop is ed

ijðrÞ ¼ �d0
ij gðrÞ.

The local stress-free strain due to the PD site fraction XðrÞ is
given by:

e0
ijðrÞ ¼ �00

ij XðrÞ; ð3Þ

where �00
ij is the Vegard tensor. The relaxation volume X is related to

the Vegard tensor through the relation Trð�00Þ ¼ X=Vat. The Vegard
tensor can be determined as follows. If one PD is introduced in a
supercell of the perfect crystal containing Nat atomic sites, this
supercell relaxes, which results in a homogeneous strain eij. The
Vegard coefficients are given by:

�00
ij ¼ Nateij: ð4Þ

If the supercell of volume Vsp is not allowed to relax, the pres-
ence of one PD acts as a source of internal stress rij related to
the elastic dipole tensor Pij through:

Pij ¼ Vsp � rij; ð5Þ

with rij ¼ Cijklekl, where Cijkl are the elastic constants of the matrix.
It follows from Eqs. (4) and (5) that Pij ¼ VatCijkl�00

kl , with Vat the
atomic volume. Starting from the knowledge of b;n; �00 and the
elastic constants of the matrix Cijkl, one can compute the elastic
potential lel of the PD for any dislocation network.

In order to model the PD absorption at the dislocation core, the
term JabsðrÞ in Eq. (1) is defined as:

Jabsðr; tÞ ¼ kðrÞ � keff � Xðr; tÞ � Xs½ � ð6Þ

Eq. (6) has been proposed in [27] to simulate PD absorption in
restricted and locally well defined regions of the PF calculation
domain. It introduces an additional order parameter kðrÞ equal to
0 in the matrix and 1 in the capture zone of the sink. For dislocation
loops, the capture zone is supposed to be circular, of radius r0 and
located around the dislocation cores. Then, k is set at 1 in a torus
with major radius rL and minor radius r0 (see Fig. 1b). This last
parameter corresponds to a new degree of freedom in the PF
model. It allows a precise control of the sink geometry, which is
essential to correctly calculate the sink strength. Eq. (6) ensures
that Jabsðr; tÞ is zero in all the volume except inside the toroidal
sink.

Xs is the PD site fraction at the surface of the sink: it depends on
the PD and the nature of the sink and is an input of the model. It is
generally chosen as the PD thermal equilibrium composition
(¼ expð�Ef =kBTÞ; Ef being the PD formation free energy). In this

Fig. 1. (a) Definition of the platelet (with the same centre c as the torus) that
represents the circular dislocation loop with thickness a0 and radius rL by means of
g. (b) Definition of the toroidal sink domain centred on c with radius rL and core
radius r0 by means of k. (c) Coexistence of both order parameters in the simulated
system.
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