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a b s t r a c t

In order to gain more insights on void swelling, dislocation bias is studied in this work. Molecular static
simulations with empirical potentials are applied to map the dislocation–point defects interaction
energies in both fcc Ni and bcc Fe model lattices. The interaction energies are then used to numerically
solve the diffusion equation and obtain the dislocation bias. The importance of the dislocation core region
is studied under a the temperature range 573–1173 K and the dislocation densities 1012—1015 m�2. The
results show that larger dislocation bias is found in the fcc Ni than in the bcc Fe under different
temperatures and dislocation densities. The anisotropic interaction energy model is used to obtain the
dislocation bias and the result is compared to that obtained using the atomistic interaction model, the
contribution from the core structure is then shown in both the Ni lattice and the Fe lattice.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Radiation induced swelling is one of the primary issues in
development of new types of nuclear power plants. This issue
severely restricts the lifetime of structural materials in nuclear
reactors. The micro-structure evolution of the material under
irradiation is the key for understanding the phenomenon of
radiation induced swelling [1]. It is well known that a biased
absorption of self interstitial atoms (SIA) by dislocations is crucial
for void swelling under high temperature and high radiation dose.
This biased absorption is described by the dislocation bias factor
(Bd). The parameter quantifies the preferential absorption of SIAs,
compared to absorption of vacancies, by dislocations. It is regarded
as the intrinsic driving force for void swelling in the standard rate
theory model [2,3]. In this model, only Frenkel pairs (FPs) are
considered and therefore excess vacancies are absorbed by voids.
In the more sophisticated production bias model [4], however,
production and annihilation of the primary clusters and their
functions as sinks and sources of point defects are properly taken
into account. Dislocation bias is still an integral part even of
this complex model. In spite of its importance, dislocation bias
has not yet been fully understood mainly because no direct

experimental measurement is available. Instead, the bias factor
could be derived from other experimental values, given a certain
swelling model. Meanwhile, theoretical studies derived from
elasticity theory have been used to obtain the bias factor [5]. The
theoretical predictions, however, do not give any quantitative
agreement with the experimental derived values [6]. One of the
insufficies regarding the theoretical approach is the simplified
interaction energy models of dislocation and point defects (PDs).
Due to the complicated mathematical characterization of a defect
migrating in the strain field of a dislocation, it is difficult to find
an analytical solution to the diffusion equation with a drift term.
However, a few important solutions were obtained. The fundamen-
tal one is Ham’s solution. In that model, only the first order size
interaction was considered in an isotropic material [5]. Improve-
ments have been made by including also the effects of modulus
interactions [7]. However, the fundamental characterization, such
as the anisotropy and SIA dumbbell orientations, are not complete.
In this work, atomistic simulations made in a comparably large
model crystal lattice have been used to obtain the interaction
energy of dislocation and PDs for both fcc (Ni) and bcc (Fe) lattices.
With the information from atomistic calculation, a numerical
method has been applied to obtain the dislocation bias. The contri-
bution from the dislocation core structure on dislocation bias has
been discussed and the influences of temperature and dislocation
densities have been reported.
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2. Theory

2.1. Isotropic interaction

The interaction energy is an important input parameter to
obtain the dislocation bias. With a infinite, straight edge disloca-
tion, the interactions between dislocation and point defects could
be described by a continuum model. In this model, the interaction
arises from the coupling between the long-range stress field of a
dislocation and the atomic displacements around the point defect.
The crystal is treated as an isotropic elastic medium, and point
defects are modeled as elastic inclusions. Assuming that the point
defects are perfectly spherical, the interaction energy between
dislocation and point defects described by the isotropic elasticity
theory can be written as [8]

E ¼ �A
sin h

r
ð1Þ

where

A ¼ lb
3p

1þ m
1� m

jDj ð2Þ

in polar coordinates ðr; hÞ. l is the shear modulus, m is Poisson’s
ratio, b is the Burgers vector, and, D is the relaxation volume of
the PD.

This isotropic elastic expression originates from the interaction
between the strain fields of dislocation and PDs, in which the
distortion produced by the edge dislocation is regarded as an
elastic distortion of a cylindrical ring. Although this approach is
often used for the analytical calculation of the bias factor, the
intrinsic isotropic assumption is a limit for its application.

2.2. Anisotropic interaction

In this model we consider the case where the xy-plane is a plane
of symmetry. Then the problem is considerably simplified. The
anisotropic stress field of the edge dislocation in a cubic crystal
is obtained from [9]:
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and

H ¼ ðc11 þ c12Þðc11 � c12 � 2c44Þ
c11c44

: ð7Þ

where cij are elastic constants. For a cubic crystal, only three of
these coefficients remain independent, eg: c11; c12 and c44.

The effective pressure acting on a volume element is [10]:

p ¼ �1
3
ðr11 þ r22 þ r33Þ ð8Þ

where r33 ¼ mðr11 þ r22Þ is the same as it is in the isotropic case.
Therefore the interaction energy E ¼ pjDj is written as:

E ¼ bð1þ mÞI
6p

jDj ð2x2yþ Hx2yþ 2y3Þ
ðx2 þ y2Þ2 þ Hx2y2

: ð9Þ

This expression converges to the isotropic case Eq. (1) when
c44 ¼ c11�c12

2 is applied.

3. Method

3.1. Computational method

In order to calculate the interaction between a dislocation and a
PD, large model lattices are constructed by using semi-empirical
embedded atom method (EAM) potentials for Ni [11] and Fe [12].
In fcc Ni, a h110i{111} edge dislocation is generated while in
bcc Fe, a h111i{110} is constructed. The simulation box of Ni is
70a0 � 7a0 � 76a0 in the [110], [�11�2] and [�111] directions,
respectively. The simulation box of Fe is 100a0 � 3a0 � 67a0 in
the [111], [11�2] and [�110] directions, respectively. Both simu-
lation boxes are large enough to exclude the image interaction
from the periodic boundary conditions.

The dislocations are introduced in the center of the model lat-
tices in the same way as Osetsky et al. [13]. Two orientations of
h100i dumbbells and six orientations of h110i dumbbells are
inserted as different configurations to fully describe the interaction
of the dislocation with the SIAs in Ni and in Fe lattices, respectively.
Calculations are made for cases of PDs in different lattice sites on
the plane that includes the Burgers vector and cutting perpendicu-
lar to the dislocation line. Full relaxation of the model lattices are
performed by a static method using the DYMOKA code [14]. During
the relaxation of the dislocation line, fixed boundary conditions are
applied on the [�111] and [�110] directions for Ni and Fe respec-
tively, while periodic boundary conditions are used on the Burgers
vector directions and the dislocation line directions. The total ener-
gies of the whole lattice are then calculated as a function of lattice
site coordinates between a PD and a dislocation.

3.2. Bias calculation method

The diffusion of a PD in a stress field can be described by Fick’s
law with a drift term:

J ¼ �5 ðDCÞ � bDC 5 E ð10Þ

with J the flux of point defects, D the diffusion coefficient, C the con-
centration of the point defects, b ¼ 1=kBT with kB the Boltzmann
constant and T the temperature, and E the interaction energy of
the dislocation with the point defects. The concentration of defects
C(r) satisfies the steady-state diffusion equation around the sink:

5 � J ¼ 0 ð11Þ

By rewriting it into a diffusion potential form:

52W ¼ b5 E � 5W ð12Þ

where W ¼ DCebEðr;hÞ is referred to as the diffusion potential func-
tion, this partial differential equation is solvable with certain
boundary conditions.

In our case, it is assumed that all point defects are absorbed at
the dislocation core region. Hence the boundary condition at the
dislocation core r ¼ r0, is Wr0 ¼ 0. At the external boundary, i.e.
the dislocation radius of influence, r ¼ R, the defect concentration
Cðr; hÞ is a constant and the interactions vanish. Hence, WR ¼ Ceq

where Ceq is the concentration of point defects in the steady state.
Assuming a straight dislocation with a core of cylinder shape,

the flux of PDs reaching unit length of a dislocation is evaluated
as [15]:

Jtot ¼ r0

Z 2p

0
Jrðr0; hÞdh ð13Þ
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