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a b s t r a c t

Density functional theory (DFT) has emerged as an important tool to probe microscopic behavior in mate-
rials. The fundamental band gap defines the energy scale for charge transition energy levels of point
defects in ionic and covalent materials. The eigenvalue gap between occupied and unoccupied states
in conventional DFT, the Kohn–Sham gap, is often half or less of the experimental band gap, seemingly
precluding quantitative studies of charged defects. Applying explicit and rigorous control of charge
boundary conditions in supercells, we find that calculations of defect energy levels derived from total
energy differences give accurate predictions of charge transition energy levels in Si and GaAs, unham-
pered by a band gap problem. The GaAs system provides a good theoretical laboratory for investigating
band gap effects in defect level calculations: depending on the functional and pseudopotential, the Kohn–
Sham gap can be as large as 1.1 eV or as small as 0.1 eV. We find that the effective defect band gap, the
computed range in defect levels, is mostly insensitive to the Kohn–Sham gap, demonstrating it is often
possible to use conventional DFT for quantitative studies of defect chemistry governing interesting mate-
rials behavior in semiconductors and oxides despite a band gap problem.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Atomic point defects and dopants play important roles in deter-
mining materials behavior. Defect chemistry and electronic prop-
erties are fundamental to understanding radiation effects and
process modeling in semiconductor electronics, active centers in
scintillating materials for radiation detectors, or the evolving
defect chemistry in nuclear fuels or degradation of nuclear waste.
Experimental information of microscopic processes that govern
behavior are often incomplete or ambiguous, and atomistic model-
ing is the best or only means to identify and characterize important
atomic-scale processes. Quantum mechanical electronic structure
calculations using density functional theory (DFT) [1,2] have
emerged as an important tool to probe the microcscopic properties
of materials and to quantify the chemistry and electronic proper-
ties of point defects. The local density approximation (LDA) [3]
and the generalized gradient approximation (GGA) such as the Per-
dew–Burke–Ernzerhof (PBE) functional [4] are mainstays of den-
sity functional investigations. The broad success that these
‘‘semilocal’’ formulations of DFT have enjoyed for structural total
energy calculations over several decades is in stark contrast with
their generally inadequate description of the fundamental band

gap in semiconductors and insulators: the eigenvalue gap derived
from the Kohn–Sham (KS) equations of DFT between occupied
valence band (VB) states and unoccupied conduction band (CB)
states underestimates the experimental gap [5]. This is widely
recognized as the ‘‘band gap problem’’ in DFT.

The band gap defines the energy scale for charge transition
energy levels, or ‘‘defect levels’’, of defects, and the band gap prob-
lem seemingly precludes quantitative predictions of defect levels
using semilocal DFT. Defects take different charge states depending
upon the position of the Fermi level within the band gap, and the
formation energies of defects with net charge are dependent upon
accurate representation of charge transitions. Elucidation of any
evolving defect chemistry depends on these defect formation ener-
gies; reaction energies are just differences of formation energies.
The search for an improved description of the band gap has driven
the development of more sophisticated functionals. For instance,
the broad success of hybrid methods, that combine conventional
semilocal DFT exchange with an admixture of explicit Hartree–
Fock exchange, to more accurately reproduce the band gaps of a
broad sampling of materials [6] has fueled increasing use of these
methods, despite their much greater computational demands.

Soon after the innovation of Kohn–Sham (KS) theory [2], the
foundation for density functional calculations, Sham and Kohn
warned against interpreting the eigenvectors and eigenstates of
the Kohn–Sham equations in terms of excitations [7], noting that
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these were mathematical constructions rather than description of
single-particle states. These cautions have obvious relevance to
the band gap problem and consequently to the computation of
defect properties, but are often overlooked in practice and not
closely investigated. In this paper, we explore the relationship
between the KS gap and defect level computations, using DFT calcu-
lations of silicon and gallium arsenide defects to demonstrate that
the shortcomings of the KS band gap are not necessarily transferred
to shortcomings in defect level calculations. The silicon system is a
good proving ground for the methods. Copious experimental
data [8] provide quantitative tests of the accuracy of computational
approaches for defect levels.

Gallium arsenide, with much less definitive characterization of
defects than silicon, is an excellent theoretical laboratory to inves-
tigate the relationship of band gaps and defect levels. Nature is not
so accommodating as to allow tuning a band gap for a given fixed
material, but the GaAs band gap is a much more malleable quantity
in theory. The KS gap for GaAs varies over a wide range for different
reasonable choices of density functional and well-converged
pseudopotentials [9]—pseudopotentials that yield consistent
values for lattice constant, elastic properties and formation ener-
gies. Comprehensive calculations of intrinsic defects within these
alternate theoretical contexts reveals that defect levels computed
from total energy calculations using conventional semilocal DFT
are not bounded by the KS gap, nor does the range of defect levels
in the different contexts exhibit any dependence on the size of KS
gap, even for contexts where the KS band gap almost vanishes.

2. Background

In addition to the basic question of the DFT band gap, the more
quotidian considerations of computational limitations have
impeded theoretical predictions of charged defects and their defect
levels. Density functional theory codes for solid state systems are
typically constructed to exploit periodic boundary conditions:
defects are investigated within the supercell approximation [10],
where an isolated defect is represented as an infinite crystal of
periodic defects, as schematically depicted in Fig. 1. In the limit
of an infinitely large supercell, the supercell calculation approaches
the limit of a completely isolated bulk defect, as sufficient bulk-like

atoms buffer the interactions between periodic images of the
defects. In practice, the computational expense of DFT limits the
number of atoms that can be incorporated in these calculations,
and the isolation of a defect from its artificial periodic images is
imperfect. The simple vacancy in silicon is a classic example illus-
trating the unphysical artifacts that can result from using smaller
supercells: in supercells composed of 64 atoms or less, the lowest
energy structure in DFT calculations retains a symmetric tetrahe-
dral configuration rather than the pairing distortion seen in larger
supercells [11]. Advances in modern computers and computer
codes now routinely enable supercell DFT calculations of several
hundred atoms, and these spurious inter-image interactions, at
least for neutral defects, are becoming less significant source of
errors in DFT simulations of defects.

Quantitatively reliable total energy calculations of charged
defects, necessary to obtain defect level energies, are more funda-
mentally hampered by a failure in the supercell approximation:
the q/r potentials from periodic images of a defect with charge q
corrupt the potential in the local vicinity of the defect, causing
the electrostatic potential for a periodic array of net charge to
diverge to infinity. This divergence is not mitigated by increasing
the supercell size. Reconstructing a viable energy expression for
charged defects and charge transitions in the presence of this
divergence is a theoretical challenge that has spawned many com-
peting approaches [12–17]. These all adopt the prevalent approxi-
mation that neutralizes the net charge in a supercell by adding a
flat background charge, or jellium, and discarding the problematic
G = 0 (net charge) term in the Fourier expansion in solving for the
potential [18]. Makov and Payne carefully analyzed the errors in
the electrostatic potential and energy within a supercell calcula-
tion and fashioned a polynomial expansion in 1/L, L being a charac-
teristic supercell length, that accurately extrapolates energies for
charged atoms and molecules [12]. This analytic approach to fixing
the electrostatic energies proved less effective for periodic systems.
Methods that replaced the physically-based parameters of the
Makov–Payne expansion with an empirical fit, to a series of super-
cells of increasing size [13] and varying shape [14], have found
better success in calculations of bulk defects. Methods that align
the electrostatic potential at a point in a defected supercell with
the same point in an undefected crystal supercell have also been
proposed perhaps culminating in an approach that also incorpo-
rates image charge corrections [15] and an approach that explicitly
discriminates between long range and short range screening [16],
and an approach that carefully distinguishes between polarization
and potential alignment while further adding consideration of
defect hybridization [17] While these various jellium-based
approaches have found greater acceptance, they still exhibit signif-
icant uncertainties, attributed to a band gap problem and to the
challenge of correctly referencing to a band edge. A particularly
careful and useful analysis of the physical and numerical uncer-
tainties in extrapolation methods to compute defect levels can be
found in Ref. [19].

An alternative approach to jellium to eliminate the divergence
in the electrostatic potential reformulates the solution of the Pois-
son Equation in the supercell. The local moment countercharge
(LMCC) method [20] divides the total supercell density into two
pieces: a model charge density that contains the net charge, and
a remainder supercell density that, now being net neutral, causes
no divergence in a periodic solution for the electrostatic potential.
The net charge density is not ignored, its potential is obtained by
treating it as an isolated charge, with a specific solution that
asymptotically has a q/r tail that decays to zero far from the charge.
This incorporates the full asymptotic charge potential within the
supercell self-consistently. The potential from this net local charge
is truncated at the supercell boundary, thereby not corrupting the
potential in adjacent cells, and explicitly avoiding an unphysical

(a)
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Fig. 1. A schematic depiction of the physics being described and the supercell
approximation which is used to model the system in a solid state density functional
theory code. (a) A radiation event occurs, causing localized damage such as a point
defect. (b) The computational model in density functional theory code approx-
imates this system as a periodic array of damaged regions, in a supercell
approximation.
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