Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research B

journal homepage: www.elsevier.com/locate/nimb

Benchmark experiment for the cross section of the ¹⁰⁰Mo(p,2n)^{99m}Tc and ¹⁰⁰Mo(p,pn)⁹⁹Mo reactions

S. Takács^{a,*}, F. Ditrói^a, M. Aikawa^b, H. Haba^c, N. Otuka^d

^a Institute for Nuclear Research, Hungarian Academy of Sciences, 4026 Debrecen, Hungary ^b Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

^c Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198, Japan

^d Nuclear Data Section, IAEA, Wien A-1400, Austria

ARTICLE INFO

Article history: Received 19 February 2016 Received in revised form 16 March 2016 Accepted 19 March 2016 Available online 28 March 2016

Keywords: ^{99m}Tc ⁹⁹Mo Thick target count rate Cross section Cyclotron

ABSTRACT

As nuclear medicine community has shown an increasing interest in accelerator produced ^{99m}Tc radionuclide, the possible alternative direct production routes for producing ^{99m}Tc were investigated intensively. One of these accelerator production routes is based on the ¹⁰⁰Mo(p,2n)^{99m}Tc reaction. The cross section of this nuclear reaction was studied by several laboratories earlier but the available data-sets are not in good agreement. For large scale accelerator production of ^{99m}Tc based on the ¹⁰⁰Mo(p,2n)^{99m}Tc reaction, a well-defined excitation function is required to optimise the production process effectively. One of our recent publications pointed out that most of the available experimental excitation functions for the ¹⁰⁰Mo (p,2n)^{99m}Tc reaction have the same general shape while their amplitudes are different. To confirm the proper amplitude of the excitation function, results of a thick target count rate measurement of the $E_{\gamma} = 140.5$ keV gamma-line from molybdenum irradiated by $E_{p} = 17.9$ MeV proton beam, as an integral benchmark experiment, to prove the cross section data reported for the ¹⁰⁰Mo(p,2n)^{99m}Tc and ¹⁰⁰Mo(

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

As an alternative to reactor produced ⁹⁹Mo/^{99m}Tc generator technology, the direct production of ^{99m}Tc on cyclotrons is considered. The possible reactions and their cross sections, the achievable production yields, specific activity and purity problems were discussed, refer to some selected publications [2-6]. Cross sections of proton induced nuclear reactions on natural and enriched molybdenum have been studied extensively. Several experimental and evaluated data-sets and evaluation are published for the activation cross sections of different reactions regarding the production of ^{99m}Tc and ⁹⁹Mo radionuclides. Studies on measuring the cross sections of the ¹⁰⁰Mo(p,2n)^{99m}Tc and ¹⁰⁰Mo(p,pn)⁹⁹Mo reactions as a function of the bombarding proton energy were carried out by many research groups with conflicting results regarding the amplitude of the reported data [1,7-23] by using both natural Mo and enriched ¹⁰⁰Mo targets. Selected data-sets of the available cross sections for the ${}^{100}Mo(p,2n)^{99m}Tc$ reaction are collected in Fig. 1 and for the ¹⁰⁰Mo(p,pn)⁹⁹Mo reaction in Fig. 2. In these

figures Levkovskij's data (1991) [8] are renormalized by a factor of 0.82 to be consistent with the latest $^{nat}Mo(p,x)^{96g}Tc$ monitor cross section by Takács (2003) [24] Fig. 1 clearly shows the amplitude differences among the available data-sets, and corrections (reevaluation) are attempted in both Figs. 1 and 2.

In our recent work [1] three independent experiments were performed with the aim to determine the amplitude of the excitation function of the ¹⁰⁰Mo(p,2n)^{99m}Tc reaction. Three experiments were carried out at E_p = 16, 36.4, and 38 MeV bombarding proton energies. New experimental cross section data were provided on a Mo target with natural isotopic composition, to clarify the existing discrepancies among the available data-sets. Determination of the cross section of the 100 Mo(p,2n) 99m Tc reaction does not require a 100 Mo enriched target material, since only two reactions contribute to direct production of ^{99m}Tc, the ¹⁰⁰Mo(p,2n)^{99m}Tc main reaction and the ${}^{98}Mo(p,\gamma)^{99m}Tc$ reaction with negligible contribution. As it was pointed out, the three new data-sets measured in independent experiments have a very good overall agreement among each other both in shape and in amplitude. The excitation functions of the ${}^{100}Mo(p,x){}^{99}Mo$ and ${}^{100}Mo(p,2n){}^{99m}Tc$ reactions were determined experimentally by using analytically derived equations in the data evaluation, avoiding various approximations

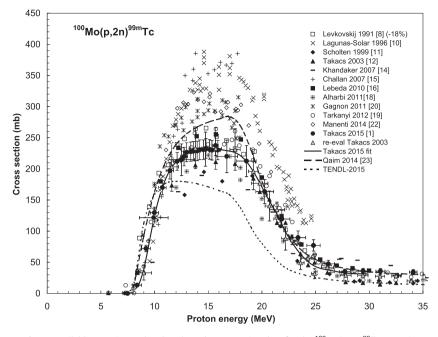


Fig. 1. Available experimental and evaluated cross section data for the ${}^{100}Mo(p,2n){}^{99m}Tc$ reaction.

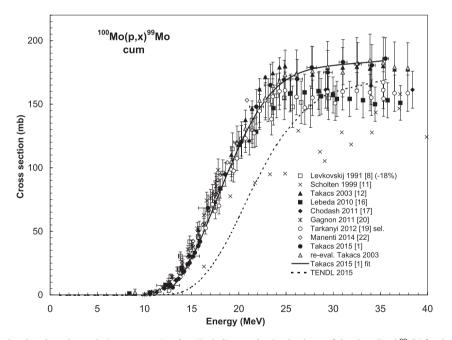


Fig. 2. Selected experimental and evaluated cumulative cross section data (including production by decay of the short lived ⁹⁹Nb) for the ¹⁰⁰Mo(p,x)⁹⁹Mo reaction.

in the data analysis. The good agreement among the results of the three independent irradiations proves that the main discrepancy among the earlier published experimental cross section data for the ¹⁰⁰Mo(p,2n)^{99m}Tc reaction could originate from large uncertainty of the used outdated decay data and probably from the applied data deduction methods.

The aim of this work was to give a further confirmation of the results presented in our recent paper [1] on cross section data of the $^{100}Mo(p,2n)^{99m}Tc$ and $^{100}Mo(p,pn)^{99}Mo$ reactions by measuring thick target count rates of the reactions and comparing them with values calculated by using the cross section data presented in [1].

2. Count rate determination

A simple experiment was performed in which the intensity of the E_{γ} = 140.5 keV gamma-line originating from decay of ^{99m}Tc and ⁹⁹Mo isotopes was measured. These radionuclides are produced in the ¹⁰⁰Mo(p,2n)^{99m}Tc and ¹⁰⁰Mo(p,pn)⁹⁹Mo reactions. A 1 mm thick Mo target with natural isotopic composition was irradiated with an $E_{\rm p}$ = 17.9 MeV proton beam and the activity of the produced ^{99m}Tc and ⁹⁹Mo was measured through the common E_{γ} = 140.5 keV gamma-line. The standard activation method and high resolution HPGe-gamma-spectrometry were used for determining the activity of the irradiated sample. Since the E_{γ} = 140.5 keV gamma-line can

Download English Version:

https://daneshyari.com/en/article/1681272

Download Persian Version:

https://daneshyari.com/article/1681272

Daneshyari.com