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Thiswork presents a numerical investigation on steady internal, external and surface flows of a liquid sphere im-
mersed in a simple shear flow at low and intermediate Reynolds numbers. The control volume formulation is
adopted to solve the governing equations of two-phase flow in a 3-D spherical coordinate system. Numerical re-
sults show that the streamlines for Re= 0 are closed Jeffery orbits on the surface of the liquid sphere, and also
closed curves outside and inside the liquid sphere. However, the streamlines have intricate and non-closed struc-
tures for Re≠ 0. The flow structure is dependent on the values of Reynolds number and interior-to-exterior vis-
cosity ratio.
© 2014 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.

1. Introduction

Shear flow generally exists in multiphase dispersions in process
industry. In some practical cases, a liquid sphere (droplet) subjects to
the force of gravity and shear simultaneously. For example, the droplets
in a stirred tank would bear shear force from the continuous phase at
low andmoderate Re (e.g., in high viscous systems and fine emulsions).
Convection and shear have appreciable effects on the transport process-
es at moderate Reynolds numbers. A thorough understanding of the
flow structure around a single droplet in simple shear flow would
help in gaining insight into the transport process of a droplet in pure
shear and complex flows. The research on pure shear flow at low and
moderate Rewould also help us to understand the complex interaction
of shear and advection co-existing in general liquid–liquid systems. The
internal and external flow fields of dispersed phase particles (including
bubble and drop) would display special flow structures in shear flows.
Thus it is necessary to study the fluid mechanics of a single particle in
shear flows for extensive understanding of rheological properties of
multiphase dispersions. On the other hand, mass and heat transfer
correlates closely with the inside and outside flow fields. This motivates
the present study on the flow structures around single particles.

Peery [1] used a singular perturbation technique to study the effect
of weak fluid inertia on the fluid velocity field around a rigid or deform-
able sphere in simple shear flow. Roberson and Acrivos [2] investigated
theoretically and experimentally the fluid velocity field around a freely
suspended cylinder in simple shear flow at low Reynolds numbers and
found that the region of closed streamlines had a finite extent along the
direction of flow. Poe and Acrivos [3] studied a solid sphere rotating
freely in simple shear flow experimentally for moderate values of
Reynolds number up to 10 and obtained the rotation rates of such a
sphere. Subramanian and Koch [4] deduced that the fluid inertia made
streamlines near a solid sphere open at non-zero Re, instead of remain-
ing closed as in the case of Re= 0. For non-zero but very small Re, cen-
trifugal forces caused the streamlines in the flow-gradient plane spiral
away from the particle surface. Mikulencak and Morris [5] quantified
the particle rotation rate for a solid sphere in simple shear flow and its
contribution to the fluid stress by using a finite element method. Yang
et al. [6] studied similar problem numerically by a finite difference
method and their numerical results of particle rotation ratewere consis-
tentwith those ofMikulencak andMorris [5]. These theoretical analyses
[5,6]were limited to Re≪ 1 and solid spheres. Liquid spheres immersed
in simple shear flow at intermediate Re are seldom targeted. The nu-
merical results of velocity and stress [6] have been used to analyze the
stresslet for liquid spheres [7]. Mao et al. [8] investigated numerically
the fully developed steady flow of non-Newtonian yield viscoplastic
fluid through concentric and eccentric annuli. The fluid rheology is de-
scribed with the Herschel–Bulkley model. The numerical simulation
based on a continuous viscoplastic approach to the Herschel–Bulkley
model is found in poor accordance with the experimental data on
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volumetric flow rate of a bentonite suspension. Fan and Yin [9] investi-
gate the interaction of two bubbles rising side by side in shear-thinning
fluid using volume of fluid (VOF) method coupled with continuous sur-
face force (CSF) method. By considering rheological characteristics of
fluid, this approach was able to accurately capture the deformation of
bubble interface, and validated by comparing with the experimental
results.

In this work, we determine numerically the flow field around a
neutrally buoyant liquid sphere in simple shear flow at finite
Reynolds numbers with a control volume formulation. We present
in detail the flow fields inside and outside a liquid sphere in simple
shear and the flow structure on drop surface. It is believed that the
flow features revealed by numerical simulation will be useful for
further analysis of heat and mass transfer as well as liquid–liquid
chemical reactions.

2. Model Equations and Method

A rigid liquid sphere is placed at the origin of coordinate system in a
Newtonian fluid, which is subject to simple constant shear far from the
droplet. The continuous and dispersed phases have equal densities. The
flow field without the central sphere is given in the Cartesian coordi-
nates as u0 ¼ γ

�
y;0;0

� �
, where γ

�
is the velocity gradient of simple

shear flow. Flow circulations may exist inside a liquid sphere due to
the shear stress from the continuous phase. The physical properties of
two phases may be different. In the laminar flow regime, the velocity
(u) and pressure (p) in each phase are governed by the continuity and
Navier–Stokes equations, in dimensionless form, as follows

∇ � u1 ¼ 0; u1 �∇u1 ¼ −∇p1 þ
1
Re1

∇2u1 ð1Þ

∇ � u2 ¼ 0; u2 �∇u2 ¼ −∇p2 þ
1
Re2

∇2u2 ð2Þ

where the subscript i=1 is for the droplet and i=2 for the continuous
phase. Coordinates are non-dimensionalized by liquid sphere radius a,
velocity byaγ

�
, and stresses by μγ

�
, where μ is the viscosity of continuous

phase. The Reynolds number is defined by Rei ¼γ
�
a2ρi=μ i, the viscosity

ratio by λ = μ1/μ2, and ρ is the density of both liquids.
The spherical coordinate system in this work is illustrated in Fig. 1,

with azimuthal angle coordinate φ, polar angle coordinate θ and radial
coordinate r. The boundary conditions related to this problem are as
follows.

(1) At the droplet interface, the normal velocity is 0:

r ¼ 1; u1rð Þs ¼ u2rð Þs ¼ 0 : ð3Þ

The tangential velocity is continuous:

r ¼ 1; u1θð Þs ¼ u2θð Þs
r ¼ 1; u1φ

� �
s
¼ u2φ

� �
s

: ð4Þ

The tangential stresses are in balance:

r ¼ 1; τ1rθð Þs ¼ τ2rθð Þs
r ¼ 1; τ1rφ

� �
s
¼ τ2rφ

� �
s

: ð5Þ

where the shear stress is computed by

τ1rθ ¼
1
r
∂u1r

∂θ þ r
∂
∂r

u1θ

r

� �� �
; τ2rθ ¼ λ

1
r
∂u2r

∂θ þ r
∂
∂r

u2θ

r

� �� �

τ1rφ ¼ 1
r sinθ

∂u1r

∂φ þ r
∂
∂r

u1φ

r

� 	� �
;

τ2rφ ¼ λ
1

r sinθ
∂u2r

∂φ þ r
∂
∂r

u2φ

r

� 	� �
:

ð6Þ

(2) At the outer boundary of the field,

r→∞; u1 ¼ u∞ ¼ y=a; 0; 0ð Þ : ð7Þ

(3) At θ = 0° and 180°, the velocity vector is continuous [10]:

u1 i0; j; k0ð Þ ¼ 1
Nφ

XNφ

k¼1

u1 i0 þ 1; j; kð Þ: ð8Þ

(4) At φ = 0° and 360°, the velocity is continuous:

u1; φ¼0 ¼ u1; φ¼2π: ð9Þ

(5) At the center of the droplet (r = 0), the flow is also continuous:

u1;r¼0 ¼ 1
NθNφ

XNθ

j¼1

XNφ

k¼1

u1 Δr; j; kð Þ: ð10Þ

In this study, Eqs. (1) and (2) are solved by afinite volumemethod in
a three-dimensional spherical coordinate system. The computational
domain is 0≤ r≤ R, 0≤ θ≤π and 0≤φ≤ 2π, where R is the size of com-
puting domain in the radial direction. At small Re the outer boundary
must be larger than the length scale aRe−1/2 on which the inertial and
viscous terms are comparable. For larger particle Reynolds numbers,
the computing domain should cover the area where the vorticity exists.
Governing Eqs. (1) and (2) are discretized on a staggered grid, with the
nodes for ur allocated on the drop surface and the origin. The grid is uni-
form in azimuthal (φ) and polar (θ) directions, but non-uniform in radi-
al (r) direction. For the internal domain, 10–20 nodes are allocated
densely and uniformly in the r direction near the surface inside the
sphere, whereas away from the surface the nodes are distributed uni-
formly but with a larger spacing. For the external domain, 20–30
nodes in the r direction are set closely and uniformly near the surface
since the velocity boundary is very thin, but after that an exponential
expansion of cell size is applied: r(n) = r(n − 1)eα, where α is a small
constant used to adjust the node spacing.

The control volume formulation with the SIMPLE algorithm [9] is
adopted to solve the governing equations. Although θ = 0° and 180°
and φ = 0° (360°) are boundaries of the computational domain, the
fluid flow is continuous there. The values of u and p are specified itera-
tively as suggested as Zhang et al. [6]. Grid sensitivity analysis has
proved that R = 60a and a grid with [60(internal) + 150(external)]
(r) × 30(θ) × 60(φ) (the minimum Δr= 0.0025) suffices for computa-
tional accuracy.

Fig. 1. Projected image of the target system and flow direction of continuous phase.
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