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Double diffusion convection in a cavity with a hot square obstacle inside is simulated using the lattice Boltzmann
method. The results are presented for the Rayleighnumbers 104,105 and 106, the Lewis numbers 0.1, 2 and 10 and
aspect ratioA (obstacle height/cavity height) of 0.2, 0.4 and 0.6 for a range of buoyancy numberN=0 to−4with
the effect of opposing flow. The results indicate that for |N| b 1, the Nusselt and Sherwood numbers decrease as
buoyancy ratio increases, while for |N| N 1, they increase with |N|. As the Lewis number increases, higher buoyan-
cy ratio is required to overcome the thermal effects and the minimum value of the Nusselt and Sherwood num-
bers occur at higher buoyancy ratios. The increase in the Rayleigh or Lewis number results in the formation of the
multi-cell flow in the enclosure and the vortices will vanish as |N| increases.
© 2014 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.

1. Introduction

Natural convection occurs because of the buoyancy effect due to
temperature gradient. There are also gradients of other scalar quantities
such as species concentration in a flow. The flow driven by the joint ef-
fect of temperature and species concentration gradients is called double
diffusive natural convection (DDNC), which appears inmanyfields such
as astrophysics, oceanography, geology, biology, chemistry and limnol-
ogy [1], and has many engineering applications such as in crystal
growth, energy storage, chemical processes [2].

Natural convection in enclosures has been studied comprehensively
[3–5]. Moreover, double diffusive convection has been the subject of
study for many researchers [6,7]. DDNC of a non-Newtonian fluid in a
shallow horizontal cavity was studied analytically and numerically
where the short walls were submitted to uniform heat and salt fluxes
and horizontal walls were insulated and impermeable [2]. Double diffu-
sion convection coupled with radiation was numerically studied in a
square cavity [8]. In their study the finite volume method was utilized
by implementation of a SIMPLER algorithm for coupling of velocity
and pressure, and tomodel radiation heat transfer equation, thediscrete
ordinate method was used. Nikbakhti and Rahimi [9] numerically stud-
ied DDNC in a rectangular cavity. In their study, a part of vertical walls
with their length half their cavity height was considered at a constant
temperature and concentration. The active part of the left wall had a
greater temperature and concentration than the active part of right
wall while horizontal walls, and inactive parts of vertical walls had no
diffusion. Since placement order of active zones plays a huge role in

heat and mass transfer, they considered nine different positions for ac-
tive parts. For the nine positions the active zoneswere at the top,middle
and bottom.

Recently the Lattice Boltzmann method has successfully substituted
the conventional methods such as finite volume method and finite ele-
mentmethod. The privilege of thismethod is its capability in calculating
complex geometries, complex boundaries and multiphase flows. Many
researchers have studied fluid flow and heat transfer in enclosures
and micro-channels using the Lattice Boltzmann method [10–17].
Among them, some authors studied double diffusive natural convection
using LBM. Ma [18] proposed a temperature-concentration lattice BGK
model to simulate DDNC in a rectangular cavity in the presence of a
magnetic field and heat source. In the rectangular cavity, horizontal
walls were insulated while vertical walls were set to constant tempera-
ture and concentration. A uniform magnetic field was applied in the x
direction. DDNC in an open cavity was studied using lattice Boltzmann
method [19]. A simple D2Q9modelwas used for flowwhile for temper-
ature and concentration a D2Q4 model was applied. The square cavity
has insulated and impermeable horizontal walls while the vertical
walls have constant temperature and concentration. In this study only
the opposing buoyancy forces were investigated.

While LBM simulation of DDNC was previously investigated by
many researchers, to the best knowledge of the authors DDNC in the
presence of an obstacle is not yet addressed in the literature. The species
concentration induced buoyancy force either aids or opposes the
thermally driven flow, determined by the value of the buoyancy ratio,
i.e. the ratio of the concentration buoyancy force to the thermal buoyan-
cy force. In this paperwe investigate double diffusive natural convection
in a square cavity in the presence of a hot square obstacle. The effect of
aiding flow (N N 0) is not the subject of interest.
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2. Method of Solution

A simple D2Q9 scheme is applied for flow, temperature and con-
centration. Fig. 1 shows geometry of the problem and the boundary
conditions. North and southwalls are adiabatic (no temperature or con-
centration diffusion), while left and right boundaries have constant
temperature and concentration. All walls of the obstacle have unit tem-
perature and concentration. The Prandtl number is 0.71.

Streaming and collision terms of flow are presented as [20]:

f a xþ eaΔt; t þ Δtð Þ ¼ f a x; tð Þ− f a x; tð Þ− f eqa x; tð Þ� �
τ

þ FaΔt ð1Þ

where fa(x+ eaΔt, t+ Δt) is the streaming part and the right hand side
of the equation is the collision term. faeq is the equilibrium distribution
function and τ is the relaxation time. The equilibrium distribution func-
tion fa

eq is given by
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where ρ and u are the density andmicroscopic velocity respectively and
ωa is the weight factor which are defined for the D2Q9 model as
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The velocities ea are [19]

ea ¼
0 a ¼ 0

c cosθa; sinθað Þ θa ¼ a−1ð Þπ
2

a ¼ 1;2;3;4

c
ffiffiffi
2

p
cosθa; sinθa

� �
θa ¼ a−5ð Þπ

2
þ π

4
a ¼ 5;6;7;8

8>><
>>: ð4Þ

where c = Δx/Δt, Δx is the lattice space and Δt is the lattice time step
size which is set to one.

In Eq. (1), Fa is the force term in each direction and can be defined as
[20]:

Fa ¼ ωa F:
ea
c2s

ð5Þ

where F is

F ¼ ρgr βTΔT þ βCΔCð Þ ¼ ρgrβTΔT 1þ Nð Þ: ð6Þ
In the above, gr, βT and βC are gravity acceleration, thermal expan-

sion coefficient and concentration expansion coefficient and ΔT and

ΔC are temperature and concentration differences respectively. The
buoyancy ratio (N) is defined as

N ¼ βCΔC
βTΔT

:

The macroscopic velocity u and density ρ can be obtained through
the first and zeroth moment of the particle distribution f, i.e. [20–22]:

u ¼ 1
ρ

X8
a¼0

f aea ð7Þ

ρ ¼
X8
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f a: ð8Þ

The kinematic viscosity in the D2Q9 method is defined as [20–22]:

υ ¼ τ−1
2

� �
c2sΔt ð9Þ

where cs is the speed of sound defined by cs ¼ c=
ffiffiffi
3

p
. It should be noted

that the above variables (u, ρ,…) are lattice quantities which can be re-
lated to physical quantities with simple conversion ratios.

Temperature (or concentration) streaming and collision are present-
ed in this manner [19]:

ga xþ Δx; t þ Δtð Þ ¼ ga x; tð Þ 1−ωsð Þ þωsga
eq x; tð Þ ð10Þ

where ga
eq x; tð Þ is the thermal (or concentration) equilibrium distribu-

tion function and ωs is the relaxation time. The thermal (or concentra-
tion) equilibrium distribution function is defined as

ga
eq ¼ ωaΦ x; tð Þ 1þ eau

c2s

� �
ð11Þ

where Φ(x, t) is either the temperature or the concentration. For D2Q9
model ωs is given by

ωs ¼
1

3Γ þ 0:5
ð12Þ

where Γ is the diffusion coefficient for temperature (α) or concentration
(D). The temperature and concentration can then be calculated at any
point in the domain:

Φ x; tð Þ ¼
X8
a¼0

ga: ð13Þ

The average Nusselt number is defined as

Nu ¼ 1
M

XM
k¼1

−∂T
∂X ð14Þ

where ΔX is the dimensionless lattice spacing. The average Sherwood
number can be calculated in a similar manner:

Sh ¼ 1
M

XM
k¼1

−∂C
∂X ð15Þ

whereM is the number of lattice nodes in Y direction. After the stream-
ing process the distribution functions in the domain are obtained. The
distribution functions toward the domain, which are unknown, are
then determined by applying the boundary conditions.

Fig. 1. Cavity geometry and boundary conditions.
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