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a b s t r a c t

A model dielectric function is derived for TiO2 based on reflection electron energy loss spectroscopy data
and photoabsorption cross sections. The model is based on a set of Mermin oscillators. The input data is
dominated by excitations at low momentum transfer, i.e. near the optical limit. Surprisingly the dielectric
function derived at low momentum transfer describes the Compton profile quite well, while approaches
based on Drude oscillators fail dramatically. The link between the dielectric function in the high-
momentum transfer limit and a Compton profile is discussed. The underlying reason why the Mermin
approach, which is based on a free electron model, is successful in describing the Compton profile is
tentatively discussed.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

There is a lot of interest recently in methods to obtain the
dielectric function �ðq;xÞ (with q the momentum transfer and x
the energy loss) of materials over an extended range of energy
and momentum [1–4]. These quantities are the basis for the calcu-
lations of the inelastic mean free path of electrons and the stopping
power of fast ions in matter. More generally the dielectric function
is an essential ingredient of the description of electron–electron
correlation in matter. Extraction of the dielectric function based
on reflection electron energy loss spectroscopy(REELS) is usually
based on extended Drude or Drude–Lindhard (D–L) models [5,6].
In its simplest form this approach does not give any broadening
of the loss function (described by Im½�1=�ðq;xÞ�) with increasing
momentum transfer, in clear contrast to experiment [7,8].
Agreement with the experiment can be improved by introducing
a q-dependent broadening term [9,10].

This restriction is not present in the Mermin loss function [11].
It is based on a free-electron model and the width of the loss fea-
ture depends on q, while maintaining the Bethe (or the related Tho
mas–Reiche–Kuhn) sum rule for all q as well as the Kramers–
Kronig sum rule. These desirable properties made the Mermin
description of the valence band dielectric function the basis for
the determination of the stopping of ions in matter [12].

A scattering electron interacts coherently over a distance of the
order of 1=q. At small momentum transfer the scattered electron
interacts thus with a rather large volume of the target and one
probes long-range density fluctuations (plasmons). At very large

momentum transfer the projectile interacts coherently only with
a small volume, containing only a single electron. In that case
one can describe the interaction as a binary collision of the projec-
tile and a target electron. The loss function at these large q values is
usually referred to as the ‘Bethe ridge’. Here the loss function
reveals information about the target electron momentum distribu-
tion and can be considered a Compton profile [13]. In this paper we
aim at obtaining a simultaneous description of both limiting condi-
tions with a single dielectric function.

For a free electron gas, Lindhard derived a dielectric function
that described both the collective behaviour at small q values
and the single-particle excitations at large q values. The Mermin
dielectric function is an extension of the Lindhard dielectric func-
tion that allows for a finite width of the peak in the loss function
due to collective excitations at low q. There are several approaches
to derive a dielectric function when the free electron approxima-
tion does not apply, e.g. by Penn [14] and Ashley [15], and a com-
parison of different approaches is given in Refs. [16,17].

In recent days it has become popular to describe the loss func-
tion of a wide range of materials by a sum of Mermin loss functions
for small q excitations. A rigorous justification for the use of a sum
of Mermin loss functions for materials that are far from free-
electron like is usually not given. The heart of this paper is the
investigation to what extent such an approach can still give a rea-
sonable description of the loss function at both low and high q
values.

In the next section we will revisit some of the properties of the
Mermin loss function using the simple case of a carbon film as an
example and demonstrate that both a more traditional electron
energy loss spectrum and a Compton profile can be described in
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a uniform way by the Mermin loss function. Subsequently, we
investigate more quantitatively, using TiO2 as a test case, if we
can obtain a set of Mermin oscillators that simultaneously
describes the feature-rich spectrum of a reflection electron energy
loss spectroscopy (REELS) measurement (extended to higher
energy loss values by photo-absorption measurements) as well
as its Compton profile. Moreover the obtained dielectric function
is in agreement simultaneously with the Bethe and Kramers–
Kronig sum rules. Finally it is discussed if the reasonable
agreement obtained can be understood in terms of some kind of
a ‘local density approximation’.

2. A simple illustration for carbon films

First let us introduce the topic considering the experimental
results for a very thin (35 Å thick) free-standing carbon film. Two
scattering measurements were done with the same electron spec-
trometer employing very different kinematical conditions [18,19].
The experiment was done in a transmission geometry and is shown
schematically in Fig. 1, the scattering angle Hs was �45�.

In the first experiment the incoming electron energy was
25 keV, and outgoing electrons with an energy loss up to 100 eV
were detected. The obtained spectrum is shown in Fig. 2(A). It
shows a sharp peak near zero energy loss (the elastic peak, due
to electrons deflected from a nucleus), and a broader, less intense
feature at larger energy loss. The latter is due to electrons that cre-
ated an electronic excitation in the film. The maximummomentum
of an electronic excitation created under these conditions is much
smaller than the momentum required to deflect a 25 keV electron
over 45�. Therefore there are no projectile electrons scattered
directly into the analyser by such an electronic excitation. All the
detected electrons have scattered elastically from a nucleus as
well. The situation is as in a normal REELS experiment [20]. The
inelastic mean free path (IMFP) of a 25 keV electron in graphite
is �270 Å [21]. Under these conditions (film thickness much smal-
ler than the IMFP) the probability for multiple inelastic excitations
is small and the shape of the loss part of the spectrum can be
directly compared to the shape of the DIIMP (differential inelastic
inverse mean free path). The (bulk) DIIMP Wbðx; E0Þ is related to
the dielectric function by:

Wbðx; E0Þ ¼ 1
pE0

Z qþ

q�

dq
q

Im
�1

eðq;xÞ
� �

ð1Þ

with the limits of integration given by: q� ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2mE0

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE0 �xÞp

[20].
To model Im �1=eðq;xÞ½ � one can use either a D–L oscillator

with 3 parameters, xp (plasmon energy at q ¼ 0), c (width of this
plasmon) and a (dispersion of the loss feature with q):

Im
�1

eDLðq;xÞ
� �

¼ cx2
px

ðx2 �x2
qÞ2 þ c2x2

Hðx� EgapÞ ð2Þ

with xq ¼ xp þ aq2 and Hðx� EgapÞ the step function assuring that
no excitations are possible within the bandgap of a semiconductor.
Alternatively one can use a Mermin oscillator:

eMðq;xÞ ¼ 1þ ð1þ icxÞ �Lðq;xþ icÞ � 1½ �
1þ ic=x �Lðq;xþ icÞ � 1½ �= �Lðq;0Þ � 1½ �Hðx� EgapÞ ð3Þ
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Fig. 1. A schematic view of the carbon film measurement done in a transmission
geometry. The scattering angle Hs is 45�, k0 and k are the momentum of the
incoming and detected electron respectively. The analyser resolves both the energy
E1 and azimuthal angle /1 of the detected electron.

(A)

(B)

Fig. 2. (A) shows the energy loss spectrum for a 35 Å thick carbon film. The
incoming energy was 25 keV. The shape of the loss spectrum can be described by
the DIIMFP of a single Mermin oscillator centred at an energy loss of 25 eV and a
width c of 20 eV. The shape of the DIIMFP (short dashed line) is very close to the
shape of the energy loss function Im½�1=�ðq ¼ 0;xÞ� (ELF, long dashed line). A D–L
based dielectric function with the same parameters has a very similar DIIMFP. In (B)
the incoming energy was 50 keV and the spectrum was measured near x ¼ 25 keV.
The shape of this spectrum resembles 1=�ðq ¼ 42:9;xÞ for the Mermin loss
function, superimposed on a rather constant background. In contrast the width of
the D–L loss function at q ¼ 42:9 a.u. is orders of magnitude smaller.
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