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a b s t r a c t

The probability density function (PDF) of energy for inelastic collision is obtained by solving the integro-
differential form of the quantity equation with the Bhabha differential cross section for particles with
spin 1/2. Hence, the total PDF in no screening region is determined by folding theory with the following
two assumptions: (1) the electron loses energy by collision and radiation and (2) the electron velocity
does not change with a thin absorber. Therefore, a set of coupled stochastic differential equations based
on the deviation and energy loss PDFs for electron is presented to obtain the electron trajectory inside the
target. The energy PDFs for an electron beamwith incident energy of 15.7 MeV inside aluminum and cop-
per are calculated. Besides, the dose distributions for an electron beam with incident energies of 20, 10.2,
6, and 0.5 MeV in water are obtained. The results are in excellent agreement with the experimental data
reported in the literature.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Computation of the charged particle trajectory in matter is of
particular importance in the study of radiobiological effects of
the electrons in a target and dose deposition. The radiobiological
effects of emitted electrons have been investigated by many
authors [1–4]. The theory of ionization of atoms induced by the
impact electron is reviewed by Llovet et al. [5]. Various theoretical
models are available for the calculation of total cross section, such
as Khare model and models by Kim–Rudd, Variens, and Grizinski
and Bousis and coworkers for liquid water [6–10]. The number of
the electrons emitted from a target increases in no screening
region, where the effect of screening of the atomic potential by
the outer electrons on the probability density function (PDF) of
the bremsstrahlung can be ignored [11]. In accordance with the
radius of the Thomas–Fermi atom for Yukawa potential, the elec-
tron energy in no screening region is approximately < 70 Z�1=3,
where Z denotes the atomic number of the target [12]. The electron
trajectory is originated from the bremsstrahlung emission and
inelastic collision with atomic electrons as well as elastic scattering
from nuclei. The PDF of energy loss for inelastic collision was cal-
culated by Landau [13] and Vavilov [14]. In multiple scattering,
the Moliere series can be considered for investigating the deviation

of charged particles [15]. Hence, a relative optical-data model for
calculating the inelastic scattering within the first-order Born
approximation for electrons and positrons is presented by Fernan-
dez Varea et al. [16]. In the previous work, the motion of proton in
various materials was calculated by analytical random sampling
from Moliere and Landau PDFs [17]. The energy loss of electrons
by radiation is important if the electron energy is larger than a
few mega-electron volts [18]. The differential cross section for
bremsstrahlung was calculated by Bethe and Heitler [12]. How-
ever, the Coulomb correction was added to the bremsstrahlung
differential cross section by Koch and Motz [19]. The bremsstrah-
lung emission and inelastic collision were considered by Mathews
to investigate the energy loss distribution of an energetic electron
beamwith incident energy >15 MeV [20,21]. In the case of ignoring
the elastic scattering, the results are in agreement with the exper-
imental data when the electron depth in matter is assumed to be
0.01–0.05 times the radiation length.

Several methods and Monte Carlo computer codes are used for
computing radiation transport and track structure in the target
[22–24]. The track structure methods are based on the solution
of analytical equations describing the transport of projectile in
the target. In addition, these methods depend on the numerical
solution for sampling the model of the projectile interactions with
the target. The one-dimensional (1D) deterministic description of
ion transport can be solved by the Boltzmann transport equation
[25]. The three-dimensional (3D) Monte Carlo track structure
codes are used for simulating the individual interactions of a
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projectile with the atoms and molecules in the target based on the
elastic scattering and inelastic collision [26]. Hence, the dose depo-
sition can be calculated by the age diffusion equation [27], whose
results are not in good agreement with the experimental data for
an electron beam traversing water with incident energy of 5–
20 MeV [28]. The Monte Carlo track structure code PENELOPE
can be used for electron and photon transport in the target and
complex geometries in the energy range of 100–1 GeV [29], where
elastic scattering, inelastic scattering, and bremsstrahlung emis-
sion are considered. In high-energy physics and nuclear experi-
ments, the Monte Carlo code Geant4 can be considered as a
toolkit for simulating the passage of particles through target [30].
On the contrary, MCNP and MCNPX are used for the simulation
of neutrons and light ions in the target [31,32]. Thus, the MC4 code
is based on different condensed-history transport schemes, where
it is modified by Bousis for water in the energy range of 1–10 keV
[33]. Other Monte Carlo computer codes are tabulated by Nikjoo
et al. [34] for various projectiles, media, and projectile energy
ranges.

The aim of this study is to calculate the electron trajectory in a
target. The PDF of energy loss for an electron in a thin absorber is
derived by folding the Landau and bremsstrahlung PDFs. In this
case, a set of coupled stochastic differential equations based on
the Moliere and energy loss PDFs is presented in no screening
region. Therefore, the dose deposition and the PDF for an electron
beam with various incident energies in a certain depth are investi-
gated. The results obtained from this stochastic model are in good
agreement with the experimental data.

2. Theory and methods

2.1. Energy loss by collision

The integro-differential form of the continuity equation must be
solved to obtain the PDF of energy in each interval. According to
the Vavilov approach, the integro-differential equation can be
solved using the Laplace transform pairs as follows [35]:

f ðt;DEÞ ¼ 1
2pi

Z Kþi1

K�i1
ds exp s DE� DE

� ��
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where K and Q represent an arbitrary real constant and the energy
transferred in a single collision, respectively; s is the Laplace trans-
form for Q; �DE and �DE represent the mean and total energy loss
for an electron in an absorber with thickness t, respectively; and Qm

is the maximum energy transferred to the atomic electron of a tar-
get. The Bhabha differential cross section for the energy transferred
to an electron between Q and Q þ dQ for a projectile with spin 1/2,
mass m, energy T, and charge ze is given by [36]:
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where b is the velocity coefficient, which can be obtained from

kinetic energy T by the relation ðc� 1Þmec2, where c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
.

By substituting Eq. (2) into Eq. (1), the exponential term in Eq. (1)
can be solved as follows:
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; j and z denote tn=Qmax and sQmax,

respectively; and cEM is the Euler–Mascheroni constant. By defining

the variable p ¼ jz in Eq. (3), the PDF f ðt; DEÞ can be written in the
following form:
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where kV ¼ ðDE� DEÞ=tn� ð1þ b2Þ þ cEM is the Vavilov parameter.
When j ! 0, Eq. (4) reduces to the form:
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Therefore, by changing the variable p ¼ iu, the Landau PDF can

be calculated as follows:

f ðt;DEÞ ¼ 1
ptn

Z 1

0
expð�u lnu� ukkÞ sinpudu; ð6Þ

where the Landau and Vavilov parameters are related to kk as:
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As the mass of an electron is smaller than that of an atom, the
electron can be deflected significantly in the collision process.
Therefore, the Bethe–Bloch formula should be modified when the
projectile is an electron. In this case, the maximum allowable
energy loss for an electron in an absorber with thickness t is T/2,
where T is the energy of the electron at t = 0 [37]. Hence, the mean
energy loss for an electron in the interval is given by:

DE ¼ �
Z t

0
dt

dE
dt

: ð8Þ

The energy loss of an electron through a thickness t in a target is
calculated by the Bethe–Bloch formula as follows [37]:

�dE
dt

¼ nt ln
2mec2 b

2Qmax
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C
Z

" #
: ð9Þ

The mean excitation potential of the target material (I) and the
effective atomic number (Zeff) are listed in Table 1 [38,39]. The val-
ues for the density correction d are given by Sternheimer formula
[40], and their constants are reported in the literature [37]. Hence,
the parameter C denotes the shell correction. As the nature of the
proposed model is stochastic, the experimental data are coupled
with the theory by considering f ðdÞ instead of dþ 2C=Z in the
Bethe–Bloch formula. Therefore, if the electron energy in the inter-
val t is considered as a constant, the mean energy loss becomes:

DE ¼ nt ln
2mec2 b

2Qmax

I2ð1� b2Þ � 2b2 � f ðdÞ
" #

: ð10Þ

Table 1
Values of Zeff, Zeff/A, and I for copper, aluminum, and water.

Material Zeff/A Zeff I (eV)

Water 0.5551 7.46 75
Copper 0.4564 29 322
Aluminum 0.4818 13 166
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