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a b s t r a c t

We study the interaction of charged particles with four different types of single-walled carbon nanotubes
(SWNTs) under channeling conditions by means of the linearized, two dimensional, one-fluid and
two-fluid hydrodynamic models. The models are used to calculate the image potential for protons mov-
ing parallel to the axis of the SWNTs at the speeds up to 10 a.u. Numerical results are obtained to show
the influence of the damping factor, the nanotube radius, and the particle position on the image potential
inside the nanotube. We also compute the spatial and angular distributions of protons and compare them
for the two models.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

After the discovery of carbon nanotubes, there has been a grow-
ing interest in investigation of interactions of charged particles
with the nanotubes. It has been demonstrated that one of the pos-
sible applications may be to use carbon nanotubes to efficiently
guide charged-particle beams [1–10] in the way very similar to
crystal channeling. However, the experimental study of ion chan-
neling through carbon nanotubes is still in the initial phase. The
most challenging task is to solve the problems of ordering,
straightening and holding nanotubes. The first experimental data
on ion channeling through nanotubes were reported by Zhu et al.
[11]. The first experiment with guiding of electrons by nanotubes
was performed by Chai et al. [12].

An ion that moves with medium (MeV) energy will induce a
strong dynamic polarization of valence electrons in the nanotubes
which in turn will give rise to a sizeable image force on the ion, as
well as a considerable energy loss due to the collective, or plasma,
excitations of those electrons [13–15]. The dynamic image force
was shown to exert large influence in the angular distributions of
protons channeled through short single-walled (11, 9) carbon nan-
otubes (SWNTs) [16] placed in vacuum. Calculations of the image
force in Ref. [16] were based on a two-dimensional (2D), one-fluid

hydrodynamic model, which treats all four valence electrons in car-
bon atoms as a single charged fluid occupying the surface of a cylin-
der. However, treating the r and p electron orbitals in carbon
nanostructures as separate but superimposed 2D fluids with their
own internal interactions due to the Thomas–Fermi pressure and
the quantum correction to the electron kinetic energy gives rise to
splitting of the collective electron excitation modes into the
so-called high-energy r + p plasmons and the low-energy p plas-
mons [15]. As a consequence of this plasmon splitting, one finds that
differences also arise in both the stopping power [15] and the image
potential [17] when the two-fluid model is used instead of the
one-fluid model. Those differences are yet to be tested in the spectra
of medium-energy ions channeled through SWNTs.

Therefore, in this work we continue investigation from previous
papers [14–16] and compare one- and two-fluid hydrodynamic
models for the dielectric response of nanotube electrons. We pre-
sent a detailed derivation of the image potential in the case of a
two-fluid hydrodynamic model and compute, for the first time,
both the angular and spatial distributions of channeled protons
using that model. A comparison is made with the distributions
obtained using the image potential from the one-fluid model for
protons moving parallel to the axes of the (6, 4), (8, 6), (11, 9)
and (15, 10) SWNTs at the speeds up to 10 a.u. After outlining
the basic theory used in modeling the dynamic polarization effects
of carbon nanotubes and in proton channeling, we discuss the
results of our ion trajectory simulations of angular and spatial dis-
tributions and give our concluding remarks. Atomic units are used
throughout unless explicitly stated otherwise.
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2. Basic theory

A SWNT is modeled as an infinitesimally thin cylindrical shell
with the radius R and the length L. We assume that the valence
electrons in the ground state may be considered as a
free-electron gas distributed uniformly over a cylindrical surface,
with the number density per unit area n0 ¼ n0

r þ n0
p where

n0
r ¼ 0:321 and n0

p ¼ 0:107 are the unperturbed number densities
corresponding to three r electrons and one p electron per carbon
atom, respectively [15]. We use cylindrical coordinates
r!¼ ðq; u; zÞ and assume that an external point charge Q moves

within the nanotube, with its trajectory parallel to the nanotube
axis z, such that the particle’s instantaneous position is given by
r!0ðtÞ ¼ ðq0; u0; vtÞ, where v is the particle’s speed. Let nið r!s; tÞ

be the first-order perturbation of the electron number density
(per unit area) and u!ið r!s; tÞ be the tangential velocity field in
the ith fluid, where the index i takes values r and p, and
r!s ¼ ðu; zÞ is the coordinate of a point at the cylindrical surface

of the nanotube. Based on the linearized, 2D, two-fluid hydrody-
namic model [15,17,18], the electronic excitations on the cylindri-
cal surface for each fluid may be described by the continuity
equation:

@niðu; z; tÞ
@t

þ n0
irjj � u!iðu; z; tÞ ¼ 0; ð1Þ

and the momentum-balance equation,

@ u!iðu; z; tÞ
@t

¼ rjjUðq; u; z; tÞjq¼R �
ai

n0
i

rjjniðu; z; tÞ

þ b

n0
i

rjj r2
jjniðu; z; tÞ

h i
� ci u!iðu; z; tÞ: ð2Þ

Note that, in Eqs. (1) and (2), rjj ¼ ð1=RÞ e!uð@=@uÞ þ e!zð@=@zÞ
differentiates only tangentially to the nanotube surface [14]. The
first term on the right-hand side of Eq. (2) is the force on an elec-
tron due to the tangential component of the electric field, evalu-
ated at the nanotube surface, where U = Uext + Uind is the total
electrostatic potential, which consists of the potential Uext from
the external point charge Q and the induced potential Uind due to
dynamic polarization of the electron fluids. The second term is
the force due to the internal interactions in the ith electron fluid,
with ai � pn0

i being the square of the speed of propagation of the
density disturbances in a 2D Fermi electron gas. The third term
with b = 1/4 comes from the quantum correction for the kinetic
energy in this gas. The last term on the right-hand side of Eq. (2)
represents the frictional force on an electron due to scattering on
the positive-charge background, with ci being the friction coeffi-
cient. In our calculations we shall assume cr = cp = c and adopt
c = 0.001 as a standard value in the case of negligible damping.

By eliminating the velocity fields u!iðu; z; tÞ, one obtains from
Eqs. (1) and (2):

@2

@t2 þ ci
@

@t
� air2

jj þ br4
jj

 !
niðu; z; tÞ

¼ �n0
ir2

jjUðq; u; z; tÞjq¼R: ð3Þ

Assuming L ?1 we may define the Fourier–Bessel (FB) trans-
form Aðq; m; k; xÞ of an arbitrary function Aðq; u; z; tÞ, by [19]:

Aðq; u; z; tÞ ¼ 1

ð2pÞ3
X1

m¼�1

Z 1

�1

Z 1

�1
Aðq; m; k; xÞeimuþikz�ixtdkdx:

ð4Þ

Taking the FB transform of Eq. (3), we obtain a relation between
the perturbed electron number density and the local value of the

total electrostatic potential at the nanotube surface q = R in the
form

nðm; k; xÞ ¼ v0ðm; k; xÞUðq; m; k; xÞjq¼R; ð5Þ

where nðm; k; xÞ ¼ nrðm; k; xÞ þ npðm; k; xÞ and the two-fluid
response function is given by v0ðm; k; xÞ ¼ v0

rðm; k; xÞþ
v0

pðm; k; xÞ with

v0
i ðm; k; xÞ ¼

n0
i k2 þ m2

R2

� �
b k2 þ m2

R2

� �2
þ ai k2 þ m2

R2

� �
�x2 � icix

: ð6Þ

The external perturbing potential Uext and the induced potential
Uind may be expressed as:

Uextðq; u; z; tÞ ¼
Z

qextð r!0; tÞ
j r!� r!0j

d3 r!0; ð7Þ

Uindðq; u; z; tÞ ¼
Z qind r!0; t

� �
j r!� r!0j

d3 r!0; ð8Þ

where qextð r!0; tÞ ¼ Qð1=q0Þdðq0 � q0Þdðu0 �u0Þdðz0 � vtÞ is the
charge density external to the electron gas, qindð r!0; tÞ ¼
�nðu0; z0; tÞdðq0 � RÞ is the charge density induced on the electron

gas, and d3 r!0 ¼ q0dq0du0dz0.
Knowing that the Coulomb potential in cylindrical coordinates

may be written as a FB transform [15,19]:

1
j r!� r!0j

¼ 1

ð2pÞ2
X1

m¼�1

Z 1

�1
eimðu�u0Þþik z�z0ð Þgmk q; q0ð Þdk; ð9Þ

where gmkðq; q0Þ ¼ 4pImðjkjq<ÞKmðjkjq>Þ with q< �minfq; q0g and
q> � maxfq; q0g, while Im and Km are cylindrical Bessel functions
of integer order m, it is easy to obtain the FB transforms of the exter-
nal and induced potentials as follows:

Uextðq; m; k; xÞ ¼ 2pQgmkðq; q0Þdðx� kvÞ; ð10Þ

Uindðq; m; k; xÞ ¼ �Rgmkðq; RÞnðm; k; xÞ: ð11Þ

Substituting Eq. (5) into Eq. (11) and using Eq. (10) one obtains:

Uindðq; m; k; xÞ ¼ �2pRQgmkðq; RÞgmkðR; q0Þvðm; k; xÞdðx� kvÞ;
ð12Þ

where gmkðq; RÞ ¼ 4pImðjkjqÞKmðjkjRÞ, gmkðR; q0Þ ¼ 4pImðjkjq0ÞKm

ðjkjRÞ, and the density response function of a carbon nanotube is
given by:

vðm; k; xÞ ¼ v0ðm; k; xÞ
1þ RgmkðR; RÞv0ðm; k; xÞ : ð13Þ

Finally, using Eqs. (4) and (12) one can obtain an expression for
the induced potential as follows:

Uindðq; u; z; tÞ ¼ �4RQ
X1

m¼�1

Z 1

�1
eimuþikðz�vtÞImðjkjqÞImðjkjq0Þ

� K2
mðjkjRÞvðm; k; kvÞdk: ð14Þ

The self energy, or the image potential Uim, for a point-charge
ion Q on the trajectory r!0ðtÞ ¼ ðq0; u0; vtÞ is defined by:

Uim ¼
Q
2

Uindðq; u; z; tÞjq¼q0 ;u¼u0 ; z¼vt : ð15Þ

Substituting Eq. (14) into Eq. (15) and setting u0 = 0, it is easy to
obtain the following relation for the image potential:

Uimðq0Þ ¼ �4Q 2R
X1

m¼�1

Z 1

0
I2
mðkq0ÞK

2
mðkRÞRe½vðm; k; kvÞ�dk; ð16Þ
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