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We investigate a proton-hydrogen model collision using a method based on the de Broglie-Bohm formu-
lation of quantum dynamics. By studying the quantum-trajectories of the particles we obtain approxi-

PACS: mate ionization and capture cross sections that are in good agreement with the exact values. In
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particular, the implementation of this high-order approximation method allows us to solve each trajec-
tory independently. The method has a relatively low computational cost and can be straightforwardly

parallelized for many bodies systems.
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1. Introduction

The theoretical investigation on atomic transition processes has
recently seen dramatic improvements through the growth of com-
puting power and development of new computational techniques
that allows the implementation of fully-numerical solutions to
the Schrodinger equation [1,2]. Despite the bright future of numer-
ical-extensive full solutions, they are currently available only for
the simpler three- and four-body systems [3]. A complementary
approach is given by methods based on perturbative approxima-
tions, providing good results with relatively low-computer
requirements [4,5]. However, there is an increasing interest on
pursuing the development of fully-numerical methods that could
be generalized to more complex systems. In fact, nowadays one
of the main requirements of computer-intensive methods is their
scalability for increasing degrees of freedom of the system.

The hydrodynamical formulation of quantum mechanics, based
on the de Broglie-Bohm interpretation, allows the exact resolution
of a system’s time evolution in an alternative approach to those
employing spatial grids or basis expansions [6-8]. The method
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was proposed initially as an interpretative tool to quantum
mechanics [8,9] except for a few early efforts [10-12]. However, re-
cently there has been a renewed interest in employing this formu-
lation as a computing method. Several authors implemented
resolutions of quantum mechanical problems in this framework
by means of the so-called “quantum-trajectories method” (QTM)
[13-17]. This approach, based on Bohm’s formulation of quantum
mechanics [6,7], describes the quantum dynamics in terms of
pseudo-particles that evolve obeying equations similar to those
of classical-mechanics. While this treatment in terms of trajecto-
ries represents a full solution of the time-dependent Schrodinger
equation (TDSE), its main drawbacks are due to the strong coupling
among trajectories and the instability of some of the resulting
equations [17]. Nonetheless, its scalability characteristics, through
parallel implementations and Monte Carlo methods, make the
quantum-trajectory approach a promising field for the investiga-
tion of many-particle collision processes.

In this communication, we present benchmark model calcula-
tions of ion-atom collisions employing approximations to the
quantum-trajectory method. In particular, we implement and
investigate a method suggested a few years ago in order to cir-
cumvent the problems arising from the strong coupling among
the trajectories [18]. The resulting equations, obtained from
rewriting the de Broglie-Bohm equations, uncouple the quan-
tum-trajectories, allowing us to solve each of them individually.
Each trajectory becomes the solution of a system of infinite cou-
pled differential equations that can be solved at different levels
of approximation.
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2. General approach

The hydrodynamical formulation of quantum mechanics may
be obtained by writing the wavefunction in polar form

W(F, ) =/ p(F, D)expSFO/h [17]. Thus, the time-dependent Schré-
dinger equation (TDSE),

RGN ( ﬁvz + V(T t)) Y(T. )

ot 2m

may be transformed to a system of coupled differential equations,
similar to those obtained in classical-mechanics,
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where m is the mass particle and the current is defined by
j(F,t)=L£Vs.

Egs. (1) and (2) describe the evolution of an ensemble of corre-
lated nodes or particles with well-defined trajectories. The first of
the above equations expresses conservation of the density of prob-
ability. The second is a modified quantum Hamilton-Jacobi (QH]J)
equation with an extra term, depending on the curvature of the
amplitude, given by the so-called quantum potential,
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which comprises the quantum nature of the problem. Observe that
by defining the velocity of the node as 7 = VS/m, the QHJ may be
rewritten in a reference system that moves with the node, taking
the form of a Newton-like equation. We obtain for the evolution
of the nodes,

m%: —ﬁ(V-I—Q) :FExt(F,t)-I-FQ]\/I(F,l’), (4)
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A modern, full implementation of this method would be superior
to traditional numerical methods based on griding of the space or
expansion of the wavefunctionin a basis. The main advantage would
be that the computation is carried out only in those regions of space
where the probability density is appreciable, leading to better scal-
ing with the dimensionality of the problem. However, the calcula-
tion of the quantum potential (3) involves numerical second-order
derivatives of the probability density, which are computationally
expensive and prone to introducing numerical instability. There is
abundant literature on implementations of the quantum-trajectory
method from the above equations [13-16,19,20]. These methods in-
clude moving least square (MLS) fitting to the densities, re-sampling
of the nodes and the inclusion of artificial viscosity terms that allow
to stabilize the equations. Besides the success of these methods,
mainly on low-dimensionality problems, their use on three-dimen-
sional collisions involving several fragments is still uncertain.

Alternative methods, based on approximate treatment of the
hydrodynamical equations have recently been developed [15,18].
These formulations provide computationally feasible solutions that
may be applied to multidimensional systems.

3. Uncoupling of the quantum-trajectories

As commented above, the main obstacle for the implementation
of methods based on QTM arises from the lack of reliable compu-
tations of the quantum potential. Moreover, due to the strong cou-
pling of the trajectories they must all be solved simultaneously,
requiring great computing power.

A few years ago, Liu and Makri proposed a method that allows
the uncoupling of the quantum-trajectories by using their stability
properties and study the evolution of wavepackets at the second-
order of approximation [18]. We now discuss the proposed method
and investigate some higher-order approximations in one-dimen-
sional collision problems.

The dynamical Bohm equations from the Lagrangian point of
view ((4) and (5)) may be rewritten in terms of the Jacobian
J(x(t),t) = ax(t)/ox(0). Thus, evolution of the probability density
along a quantum-trajectory x(t) is given by its initial value and
the evolution of the Jacobian,

p(XOsO)
Jx(®), )

The evolution of the Jacobian is obtained by deriving (4) respect to
the initial position X,
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In order to evaluate the quantum force, the first three deriva-
tives of the Jacobian are needed. At the same time the evolution
of the Jacobian involves the computation of high-order derivatives
of the quantum force. This entanglement creates an infinite hierar-
chy of coupled equations that can be truncated at different orders.

The quantum force, derived from the quantum potential (3), de-
pends on the third-order derivatives to the probability density.
However, the derivatives of the Jacobian vanish at the second-
order of approximation and the quantum force for a pseudo
particle depends only on its initial value and the Jacobian,
F(0)

NG
The derivative of the quantum force needed to solve the evolution is
obtained from this equation.

This simple approximation has been shown to provide good re-
sults for wavepacket evolution and some smooth barrier transmis-
sion problems [18]. However, the approximation may fail because
the approximated quantum force expression (7) introduces insta-
bilities in the evolution when the Jacobian becomes very small.

In order to obtain higher-order approximations, we start writ-
ing the general form of the quantum potential in terms of the Jaco-
bian along the trajectories,
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Thus, the quantum force may be obtained by taking the deriva-
tives of (8). The resulting expressions no longer have the simple
form of the second-order approximation (7) and depend on high-
order derivatives of the Jacobian.
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4. Model of proton-hydrogen collision

In this communication, we show results from a one-dimen-
sional proton-hydrogen collision model. We investigate the elec-
tron distribution evolution, initially bounded to the target proton
at the ground hydrogen state. In this approximation model, the
projectile is moving at a constant velocity against the target. Both
protons are described by an Eckart potential,

X) = 2717
cosh”[(x — x.)]

)

where x. represents the position for each proton. In this approxima-
tion the target nucleus is fixed at the origin, while the electron
moves at constant velocity v,. Initially the centers are separated
at a distance of 10 a.u.
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