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a b s t r a c t

We investigate a proton–hydrogen model collision using a method based on the de Broglie–Bohm formu-
lation of quantum dynamics. By studying the quantum-trajectories of the particles we obtain approxi-
mate ionization and capture cross sections that are in good agreement with the exact values. In
particular, the implementation of this high-order approximation method allows us to solve each trajec-
tory independently. The method has a relatively low computational cost and can be straightforwardly
parallelized for many bodies systems.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The theoretical investigation on atomic transition processes has
recently seen dramatic improvements through the growth of com-
puting power and development of new computational techniques
that allows the implementation of fully-numerical solutions to
the Schrödinger equation [1,2]. Despite the bright future of numer-
ical-extensive full solutions, they are currently available only for
the simpler three- and four-body systems [3]. A complementary
approach is given by methods based on perturbative approxima-
tions, providing good results with relatively low-computer
requirements [4,5]. However, there is an increasing interest on
pursuing the development of fully-numerical methods that could
be generalized to more complex systems. In fact, nowadays one
of the main requirements of computer-intensive methods is their
scalability for increasing degrees of freedom of the system.

The hydrodynamical formulation of quantum mechanics, based
on the de Broglie–Bohm interpretation, allows the exact resolution
of a system’s time evolution in an alternative approach to those
employing spatial grids or basis expansions [6–8]. The method

was proposed initially as an interpretative tool to quantum
mechanics [8,9] except for a few early efforts [10–12]. However, re-
cently there has been a renewed interest in employing this formu-
lation as a computing method. Several authors implemented
resolutions of quantum mechanical problems in this framework
by means of the so-called ‘‘quantum-trajectories method” (QTM)
[13–17]. This approach, based on Bohm’s formulation of quantum
mechanics [6,7], describes the quantum dynamics in terms of
pseudo-particles that evolve obeying equations similar to those
of classical-mechanics. While this treatment in terms of trajecto-
ries represents a full solution of the time-dependent Schrödinger
equation (TDSE), its main drawbacks are due to the strong coupling
among trajectories and the instability of some of the resulting
equations [17]. Nonetheless, its scalability characteristics, through
parallel implementations and Monte Carlo methods, make the
quantum-trajectory approach a promising field for the investiga-
tion of many-particle collision processes.

In this communication, we present benchmark model calcula-
tions of ion–atom collisions employing approximations to the
quantum-trajectory method. In particular, we implement and
investigate a method suggested a few years ago in order to cir-
cumvent the problems arising from the strong coupling among
the trajectories [18]. The resulting equations, obtained from
rewriting the de Broglie–Bohm equations, uncouple the quan-
tum-trajectories, allowing us to solve each of them individually.
Each trajectory becomes the solution of a system of infinite cou-
pled differential equations that can be solved at different levels
of approximation.
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2. General approach

The hydrodynamical formulation of quantum mechanics may
be obtained by writing the wavefunction in polar form

wð~r;~tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qð~r;~tÞ

q
expiSð~r;~tÞ=�h [17]. Thus, the time-dependent Schrö-

dinger equation (TDSE),

i�h
owð~r; tÞ

ot
¼ � �h2

2m
r2 þ Vð~r; tÞ

 !
wð~r; tÞ

may be transformed to a system of coupled differential equations,
similar to those obtained in classical-mechanics,

oqð~r; tÞ
ot

¼ �~r~jð~r; tÞ; ð1Þ

� oSð~r; tÞ
ot

¼ ð
~rSð~r; tÞÞ2

2m
þ Vð~rÞ þ Qð~r; tÞ; ð2Þ

where m is the mass particle and the current is defined by
~jð~r; tÞ ¼ q

m
~rS.

Eqs. (1) and (2) describe the evolution of an ensemble of corre-
lated nodes or particles with well-defined trajectories. The first of
the above equations expresses conservation of the density of prob-
ability. The second is a modified quantum Hamilton–Jacobi (QHJ)
equation with an extra term, depending on the curvature of the
amplitude, given by the so-called quantum potential,

Qð~r; tÞ ¼ � �h2

8m
2
r2qð~r; tÞ
qð~r; tÞ �

rqð~r; tÞ
qð~r; tÞ

� �2
" #

; ð3Þ

which comprises the quantum nature of the problem. Observe that
by defining the velocity of the node as ~v ¼ ~rS=m, the QHJ may be
rewritten in a reference system that moves with the node, taking
the form of a Newton-like equation. We obtain for the evolution
of the nodes,

m
d~v
dt
¼ �~rðV þ QÞ ¼ FExtð~r; tÞ þ FQMð~r; tÞ; ð4Þ

dq
dt
ð~r; tÞ ¼ �q~r �~vð~r; tÞ: ð5Þ

A modern, full implementation of this method would be superior
to traditional numerical methods based on griding of the space or
expansion of the wavefunction in a basis. The main advantage would
be that the computation is carried out only in those regions of space
where the probability density is appreciable, leading to better scal-
ing with the dimensionality of the problem. However, the calcula-
tion of the quantum potential (3) involves numerical second-order
derivatives of the probability density, which are computationally
expensive and prone to introducing numerical instability. There is
abundant literature on implementations of the quantum-trajectory
method from the above equations [13–16,19,20]. These methods in-
clude moving least square (MLS) fitting to the densities, re-sampling
of the nodes and the inclusion of artificial viscosity terms that allow
to stabilize the equations. Besides the success of these methods,
mainly on low-dimensionality problems, their use on three-dimen-
sional collisions involving several fragments is still uncertain.

Alternative methods, based on approximate treatment of the
hydrodynamical equations have recently been developed [15,18].
These formulations provide computationally feasible solutions that
may be applied to multidimensional systems.

3. Uncoupling of the quantum-trajectories

As commented above, the main obstacle for the implementation
of methods based on QTM arises from the lack of reliable compu-
tations of the quantum potential. Moreover, due to the strong cou-
pling of the trajectories they must all be solved simultaneously,
requiring great computing power.

A few years ago, Liu and Makri proposed a method that allows
the uncoupling of the quantum-trajectories by using their stability
properties and study the evolution of wavepackets at the second-
order of approximation [18]. We now discuss the proposed method
and investigate some higher-order approximations in one-dimen-
sional collision problems.

The dynamical Bohm equations from the Lagrangian point of
view ((4) and (5)) may be rewritten in terms of the Jacobian
JðxðtÞ; tÞ ¼ oxðtÞ=oxð0Þ. Thus, evolution of the probability density
along a quantum-trajectory xðtÞ is given by its initial value and
the evolution of the Jacobian,

qðxt; tÞ ¼
qðx0;0Þ
JðxðtÞ; tÞ :

The evolution of the Jacobian is obtained by deriving (4) respect to
the initial position x0,

m
d2Jðx0; tÞ

dt2 ¼ Fð1Þðx; tÞJðx0; tÞ: ð6Þ

In order to evaluate the quantum force, the first three deriva-
tives of the Jacobian are needed. At the same time the evolution
of the Jacobian involves the computation of high-order derivatives
of the quantum force. This entanglement creates an infinite hierar-
chy of coupled equations that can be truncated at different orders.

The quantum force, derived from the quantum potential (3), de-
pends on the third-order derivatives to the probability density.
However, the derivatives of the Jacobian vanish at the second-
order of approximation and the quantum force for a pseudo
particle depends only on its initial value and the Jacobian,

FqðtÞ ¼
Fqð0Þ
J3ðtÞ

: ð7Þ

The derivative of the quantum force needed to solve the evolution is
obtained from this equation.

This simple approximation has been shown to provide good re-
sults for wavepacket evolution and some smooth barrier transmis-
sion problems [18]. However, the approximation may fail because
the approximated quantum force expression (7) introduces insta-
bilities in the evolution when the Jacobian becomes very small.

In order to obtain higher-order approximations, we start writ-
ing the general form of the quantum potential in terms of the Jaco-
bian along the trajectories,

QðtÞ ¼ Q 0

J2ðtÞ
þ �h2

2m
Jð1ÞðtÞ
J3ðtÞ

qð1Þ0

q0
� 5�h2

8m
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 !2

þ �h2

4m
Jð2ÞðtÞ
J3ðtÞ

: ð8Þ

Thus, the quantum force may be obtained by taking the deriva-
tives of (8). The resulting expressions no longer have the simple
form of the second-order approximation (7) and depend on high-
order derivatives of the Jacobian.

4. Model of proton–hydrogen collision

In this communication, we show results from a one-dimen-
sional proton–hydrogen collision model. We investigate the elec-
tron distribution evolution, initially bounded to the target proton
at the ground hydrogen state. In this approximation model, the
projectile is moving at a constant velocity against the target. Both
protons are described by an Eckart potential,

VðxÞ ¼ �1

cosh2½ðx� xcÞ�
; ð9Þ

where xc represents the position for each proton. In this approxima-
tion the target nucleus is fixed at the origin, while the electron
moves at constant velocity vp. Initially the centers are separated
at a distance of 10 a.u.
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