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a b s t r a c t

Comprehensive fractal Monte Carlo model ITMC-F (Hu and Hassanein, 2012 [1]) is developed based on
the Monte Carlo ion bombardment simulation code, i.e., Ion Transport in Materials and Compounds
(ITMC) code (Hassanein, 1985 [2]). The ITMC-F studies the impact of surface roughness on the angular
dependence of sputtering yield. Instead of assuming material surfaces to be flat or composed of exact
self-similar fractals in simulation, we developed a new method to describe the surface shapes. Random
fractal surfaces which are generated by midpoint displacement algorithm and support vector machine
algorithm are combined with ITMC. With this new fractal version of ITMC-F, we successfully simulated
the angular dependence of sputtering yield for various ion-target combinations, with the input surface
roughness exponent directly depicted from experimental data (Hu and Hassanein, 2012 [1]). The
ITMC-F code showed good agreement with the experimental data. In advanced, we compare other exper-
imental sputtering yield with the results from ITMC-F to estimate the surface roughness exponent for
ion-bombarded material in this research.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Fractal is a concept introduced by Benoît Mandelbrot in 1975. It
is based on the mathematical assumption of

ðlineÞ
1
1 ¼ ðareaÞ

1
2 ¼ ðvolumeÞ

1
3 ð1Þ

From Eq. (1), if a rough surface has a dimension D greater than
2, it should obey the modified relationship [3]:

ðareaÞ
1
D ¼ ðvolumeÞ

1
3 ð2Þ

In fractals, the property that same pattern repeats itself for all
observing scales is called self-similarities. Basically, there are three
groups of fractals. These are exact self-similarity, quasi-self-simi-
larity, and statistical self-similarity. Exact self-similarity fractals
appear exactly the same under any scales. Usually this kind of frac-
tal is defined from iterated function. Quasi-self-similarity fractals
appear in distorted or degenerated forms in different scale. Usually
they are defined by recurrence relations. The last one is the
statistical self-similarity fractals. These fractals preserve the same
statistical properties across scales. The representation for this
group is Brownian motion.

The next question is how to calculate this type of non-integer
dimensions. Mathematician Felix Hausdorff made two important

concepts to fractal dimensions, the Hausdorff measure and
Hausdorff dimension. Here is a plain interpretation: if a given
object will double its size with three copies, the dimension for this
object is d ¼ log 3

log 2 ¼ 1:44427 which is not an integer. More generally

speaking, if C copies are needed with the size becomes ‘‘a’’ times
for a ‘‘d’’ dimension object, the fractal dimension is therefore
d ¼ log C

log a.

For the mathematical definition of Hausdorff dimension, we
need to introduce Hausdorff measure. Assuming an arbitrary
subset F 2 RnwithfUigis a d-cover for F. Given nonnegative real s,
d > 0, we define

Hs
dðFÞ ¼ inff

X1

i¼1

jUijs : 0 < jUij < d;8ig ð3Þ

where the infimum (the largest element which is smaller than all
the elements in the set) is taken over all sequences of sets fUig1i¼1.

If we let d! 0, we can construct the s-dimensional Hausdorff
measure by

HsðFÞ ¼ lim
d!0

Hs
dðFÞ ð4Þ

For Hausdorff measure definition, supposed that t > s so that
t�s > 0, and that fUigis ad-cover for F. Then we get
X
jUijt 6 dt�s

X
jUijs ð5Þ

and by taking infima we get
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Ht
dðFÞ 6 dt�sHs

dðFÞ ð6Þ

If d! 0 and Hs
dðFÞ is finite, it can be seen that Ht

dðFÞ ! 0. Also if
Ht

dðFÞ is finite, it means Hs
dðFÞ ! 1. The interpretation of this result

is that there is a critical value of s at which Hs
dðFÞ changes from

1! 0. For F 2 Rn, we define this unique value to be the Hausdorff
dimension of F and denote it dimHF, where

dimHF ¼ inffs : HsðFÞ ¼ 0g ¼ supfs : HsðFÞ ¼ 1g ð7Þ

It is difficult to determine Hausdorff dimension in experiments.
Thus the practical way is to use the so called box-counting method.
The idea of box-counting is to implement the fractal onto a uni-
formly divided mesh and count how many grids are needed to cov-
er the fractal. By observing the relation between grid size and
number of grids needed, box-counting dimension can be defined
by these two parameters. For the mathematical definition, again
we assume an arbitrary subset F 2 RnwithfUigis ad-cover for F.
Let NdðFÞ be the smallest possible number of sets in any d-cover
of F. We define the lower box and upper box dimension by

dimB ¼ limd!0
logðNdðFÞÞ
�logðdÞ ð8Þ

and

dimB ¼ limd!0
logðNdðFÞÞ
�logðdÞ ð9Þ

If dimB ¼ dimB then we call the common value simply dimBðFÞ
or the box-counting dimension

dimBðFÞ ¼ lim
d!0

logðNdðFÞÞ
�logðdÞ ð10Þ

Here the terms ‘‘lower’’ and ‘‘upper’’ indicate the lower and
upper limit concept in math.

So what exactly is the relationship between Box-counting and
Hausdorff measure? Consider for a sufficiently small d, such that
Hs

d P 1, so for all such d-covers Ui of F, we have

1 6
X1

i¼1

jUijs ð11Þ

Thus in any d-cover of F,

1 6 dsNdðFÞ ð12Þ

By arranging the equation, we have:

0 6 log NdðFÞ þ log ds ¼ log NdðFÞ þ s log d ð13Þ

log NdðFÞ
� log d

P s ð14Þ

So we can see that

dimBðFÞP s ¼ dimHðFÞ ð15Þ

Since we always have dimBðFÞP dimB ðFÞ, the relation between
Hausdorff dimension and box-counting dimension is

dimBðFÞP dimBðFÞP dimHðFÞ ð16Þ

Based on box-counting idea, numerous techniques are devel-
oped for different research topics. In 1983, Peter Pfeifer with David
Avnir and Dina Farin used this concept to measure the fractal
dimension of material surfaces [4,5]. They used different sizes of
molecules adsorbed on material surface as shown in Fig. 1, and
used Braunauer–Emmett–Teller (BET) method to measure the
number of molecules adsorbed. By calculating the relationship be-
tween molecule sizes and quantity, they can determine surface
roughness, and more details can be found in reference [6].

Instead of using the relation between surface areas versus mol-
ecule cross section, in 1990s scientists started to use Scanning Tun-
neling Microscopy (STM) in experiments to measure the root-
mean-square (rms) roughness which is defined by:

r ¼< ½hðx; yÞ � h�2>1
2 ð17Þ

where h is the average height.
Krim’s group [7] used the relation of average rms roughness

versus scanning size to determine fractal dimension, because the
rms surface roughness increases with the sample length L follow-
ing the relation r / LH . Here H is called the roughness exponent
and has a value 0 < H < 1, which relates to fractal dimension by
D ¼ 3� H. There are several other methods to determine surface
roughness other than gas adsorption and STM. Atomic Force
Microscopy (AFM), Reflection High-Energy Electron Diffraction
(RHEED), High Resolution Low Energy Diffraction (HRLEED), he-
lium atom scattering, Transmission Electron Microscopy (TEM),
as well as Scanning Electron Microscopy (SEM) all have been uti-
lized to measure fractal dimension.

For simulation aspect, in 1989, D. Ruzic implemented a model
in a code named VF-TRIM [8] to model surface roughness by add-
ing the fractal geometry into TRIM, which is a binary-collision
computer program for calculating material sputtering. The rough
surface implemented in the model is composed by an exact self-
similarity fractal. Snell’s refraction law is considered when an inci-
dent ion entering a surface, and the fraction relation between ini-
tial incident angle a and the new angle angle a0 is:

sin2a0 ¼ E0

E0 þ Esb
sin2a ð18Þ

In the equation, E0 is the incident energy and Esb is the surface
binding energy. This equation is actually the measure of refraction
for a particle hitting the surface. And from a0 the characteristic
fractal dimension D is defined as:

D ¼
logðR Pmax tana0þPmax

Pmax=cosa0 Þ
logðRÞ ¼ logðRðcosa0 þ sina0ÞÞ

logðRÞ ð19Þ

This has the similar form with the fractal dimension in the
mathematical definition.

Another simulation result is from the Yamamura’s group in
2005. Their group added the fractal dimension parameter into
the ACAT code, which is based on Monte Carlo simulation [9]. They
used Fourier Filtering method to describe surface roughness and
set the fractal dimension equals 2.1 to fit the experimental data
and compared to planar ACAT.

In conclusion, experimental methods are similar to box-count-
ing concept and simulation methods have used both exact and ran-
dom fractal to describe the surface. There are numerous
experimental and simulation research in this area, but they are
not well-connected together by fractal dimension and thus are
not yet able to predict the surface roughness exponent.

Fig. 1. Schematic of gas adsorption method.
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