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Abstract  Operation optimization is an effective method to explore potential economic benefits for existing plants. 
The maximum potential benefit from operation optimization is determined by the distances between current operat-
ing point and process constraints, which is related to the margins of design variables. Because of various distur-
bances in chemical processes, some distances must be reserved for fluctuations of process variables and the opti-
mum operating point is not on some process constraints. Thus the benefit of steady-state optimization can not be 
fully achieved while that of dynamic optimization can be really achieved. In this study, the steady-state optimization 
and dynamic optimization are used, and the potential benefit is divided into achievable benefit for profit and un-
achievable benefit for control. The fluid catalytic cracking unit (FCCU) is used for case study. With the analysis on 
how the margins of design variables influence the economic benefit and control performance, the bottlenecks of 
process design are found and appropriate control structure can be selected. 
Keywords  design margin, operation optimization, control performance, bottleneck, fluid catalytic cracking unit 
(FCCU) 

1  INTRODUCTION 

Operation optimization is an effective method to 
explore potential economic benefits for existing chemi-
cal plants, while the economic benefits from operation 
optimization depend on the margins of design vari-
ables. According to the demand for optimal design of 
chemical process, the steady-state operating point of 
the optimal design generally lies on the boundaries of 
process constraints. In operations, process variables 
should be restricted within active constraints on con-
dition that they are “hard”. However, the effect of dis-
turbances and uncertainties in real processes usually 
perturb the plant from the desired steady-state opti-
mum operating point, violating some active constrains, 
so the plant can not run at the desired steady-state op-
timum operating point. To ensure operating feasibility 
and production goals, sufficient margins must be 
added on the design variables, then the operating point 
will move into the feasible region and there are proper 
distances between current operating point and active 
constraints. The magnitudes of the distances lead to 
the back-off of process economic performance but 
provide free space for operation optimization. 

The margins of design variables will directly in-
fluence process operation and control performance. 
When process conditions change or disturbances occur, 
the process variables change with time dynamically, 
which are generally damped oscillation processes be-
cause of the process control system. The dynamic 
process must be considered in design margins, other-
wise the process control system can not work. Xu and 
Luo [1 4] have pointed out that, for conventional pro-
portional-integral-differential (PID) control or for 

model predictive control, design margins for control 
and operation must be considered and their sizes are 
related to process control system. The better control 
performance is requested, the more margins are re-
quired. Larger margin may bring more flexibility in 
operation and control, but requires larger equipment 
investment and operating costs. 

A number of methodologies have been developed 
for addressing the interactions between process design 
and process control. Previous researches about margin 
analysis, operatability and control performance evalua-
tion, and integration of process design and control are 
as follows. 

(1) Process controllability assessment. When con-
sidering process uncertainty, the evaluation of open 
and closed-loop controllability indicators of different 
process designs allows the comparison and classifica-
tion of alternatives in terms of operational characteris-
tics, such as the metric of open-loop controllability [5], 
dynamic economic impact of disturbance and uncer-
tain parameters [6, 7], and flexibility and resilience 
analysis [8 10]. 

(2) Simultaneous design and control. More sys-
tematic efforts are on the context of interactions of de-
sign and control to design economically optimal proc-
esses that could operate in an efficient dynamic mode 
within an envelope around the nominal point. Economics- 
based performance index and control performance are 
usually considered based on dynamic model, and pos-
sible disturbances and uncertainties are taken into ac-
count. Dynamic optimization is employed in order to 
determine the most economic process design and control 
system that satisfies all dynamic operability constraints. 
There are several aspects about the problem such as 
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control algorithm, optimization algorithm, quantifica-
tion of disturbances and parametric uncertainty. After 
years of development, control algorithms have extended 
from conventional PID control [11] to optimal control 
[12, 13], predictive control [14], and internal model 
control [15]. Optimization algorithms have developed 
from the conventional nonlinear programming [16] to 
the heuristic particle swarm optimization (PSO) algo-
rithm [17], and the robust control tools based on 
Lyapunov theory and structured singular value analy-
sis are used to estimate the bounds on process worst-case 
variability, process feasibility, and process stability 
[18 20]. The applied processes have extended from 
distillation column [21] to polymerization reactor 
[22 24]), crystallization reactor [25] and so on. 

(3) Margin analysis and control design based on 
dynamic models. Xu and Luo [1 4] have integrated 
margin analysis methods into the optimized process 
and control design. It is found that the design margin 
should be divided into steady-state margin and dy-
namic margin, and the dynamic margin is necessary 
for control and is related to control system. In process 
design the control performance and design margins 
should be considered as a whole in order to fulfill proc-
ess demand and achieve good control performance. 

In the presence of design margins, the distances 
between current operating point and active constraints 
provide certain space for operation optimization. The 
steady-state operation optimization is often used for 
more economic benefit. However, there are various 
disturbances and process variables always vary in 
chemical processes, and some distances between the 
optimum operating point and process constraints must 
be reserved for dynamic regulations of control system, 
so the operation optimization can not fully explore the 
space from design margins and the benefit of the 
steady-state operation optimization can not be fully 
achieved. Only the benefit from dynamic operation 
optimization considering dynamic responses of proc-
ess variables can be really achieved. 

In this paper, steady-state optimization and dy-
namic optimization are used to evaluate the potential 
benefit of FCCU, which is divided into achievable 
benefit for profit and unachievable benefit for control. 
To explore how the margins of design variable influ-
ence the economic benefit and control performance, 
the bottlenecks of process design could be found and 
appropriate control structure could be selected. 

2  OPERATION OPTIMIZATION AND DESIGN 
MARGIN 

An ideal process should be designed to achieve 
optimal economic performance while meeting all 
process constraints. The optimal design is given by 

min ( , , )F x d u              (1a) 

s.t.  ( , , ) 0f x d u            (1b) 

 ( , , ) 0g x d u               (1c) 

where vector x represents the state variables, d repre-
sents the design variables, u represents the manipula-
tion variables, f(·) the equations of process model, g(·) 
the equations of process constraints, and F is the ob-
jective function of optimal design, involving equipment 
investment cost and operating cost. With the steady- 
state optimization, the optimal design ( x , d , u ) can 
be obtained. 

To solve the optimal design problem, we define 
the Lagrange function as 

T T( , , ) ( , , ) ( , , ) ( , , )L Fx d u x d u f x d u g x d u  

(2) 
where  is the Lagrange multiplier vector of equality 
constraints and  is the Lagrange multiplier vector of 
inequality constraints. 

Let i and j represent the active set and non-active 
set of inequality constraints respectively. For the ac-
tive set, the optimal solution is on the boundaries of 
process constraints gi(·) 0, with corresponding La-
grange multiplier i 0. For the non-active set, the 
optimal solution is within the boundaries of process 
constraints gj(·)<0, with corresponding Lagrange mul-
tiplier j 0. 

According to the first-order necessary conditions 
of local extremum for constrained nonlinear program-
ming, a sensitivity analysis is carried out on ( x , d , 
u ),  

T T( ) ( ) ( ) 0F f gx x x
x x x

  (3a) 

T T( ) ( ) ( ) 0F f gd d d
d d d

  (3b) 

 T T( ) ( ) ( ) 0F uf gu u
u u u

  (3c) 

For the process state equation f(·), the first-order 
Taylor expansion is implemented at the steady-state 
optimal design point ( x , d , u ),  

( ) ( ) ( ) 0xf f fd u
x d u

     (4) 

Adding Eqs. (3a), (3b) and (3c), we obtain 
T 0F g             (5) 

For non-active constraints, there is Lagrange 
multiplier j 0. The non-active constraints can be 
removed from Eq. (5),  

0i i
i

F g            (6) 

The steady-state operating point of the optimal 
design generally lies on the boundaries of some proc-
ess constraints, which are active constraints gi(·) 0. 
Because these active constraints are “hard”, process 
variables should be restricted within them when proc-
ess runs. Since some uncertainties may violate active 
constrains, the margins d must be added to the de-
sign variables d , then the operating point will move 
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