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a b s t r a c t 

In analytical models of the propagation and generation of acoustic and entropy waves across a premixed 

flame, the relations that couple upstream and downstream flow variables often consider the flame as a 

discontinuity at rest. This work shows how the model of a flame at rest can misrepresent the generation 

of entropy waves, and how it leads to paradoxical results concerning the conservation of mass and vol- 

ume flow rates across the flame. Such inconsistencies can be resolved by taking into account the move- 

ment of the flame in the coupling relations for flow perturbations. Analysis in a quasi-1D framework 

shows that in the absence of perturbations in equivalence ratio, the magnitude of the entropy waves 

generated across the flame are first order in Mach number and derive from interactions between the 

upstream acoustics and the mean heat release rate. For non-perfectly premixed flames, fluctuations in 

equivalence ratio may generate perturbations in entropy of leading order in Mach number. Furthermore, 

for the moving flame model conservation of volume flow rate across a passive, perfectly premixed flame 

appears as a natural consequence of mass and energy conservation. 

© 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

In lean combustion systems, one of the major challenges to 

technological progress is thermo-acoustic instability. Such insta- 

bilities may be caused by fluctuations in pressure or velocity, i.e. 

acoustic disturbances, which impinge on the flame, causing the 

heat release rate to become unsteady. Fluctuations in heat release 

rate will in turn generate more acoustic disturbances, so that a 

feedback-loop is established, which may result in self-excited in- 

stability. 

Acoustic perturbations at a flame can also cause so-called 

“entropy waves”, i.e. temperature inhomogeneities in the burnt 

gases that are transported convectively. As Marble and Candel [1] 

have explained, when such inhomogeneities experience accelera- 

tion downstream of the flame (e.g. through a nozzle), acoustic 

waves are generated in both upstream and downstream directions 

from the zone of acceleration. The upstream propagating compo- 

nent travels back into the combustion chamber, contributing to the 

acoustic oscillations in the system. This mechanism can also trigger 

thermo-acoustic instabilities, see [2–5] . 
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According to Rayleigh [6] , instabilities in a thermo-acoustic sys- 

tem can occur, when thermal and acoustic disturbances interact 

constructively. Therefore, understanding the mechanisms of acous- 

tic and entropy waves generation across the flame, and their prop- 

agation in the system is crucial for prediction and control of the 

thermo-acoustic instabilities. 

To predict system instabilities, the framework of low-order net- 

work models is widely employed [5,7–13] . In this framework, a 

one-dimensional thermo-acoustic system is represented as a net- 

work of acoustic elements, each one characterized by its transfer 

matrix, which expresses the relations between the flow perturba- 

tions in velocity u ′ , pressure p ′ and entropy s ′ upstream of the el- 

ement to the perturbations downstream, see [14] . 

In an idealized treatment, such relations may be derived ana- 

lytically from the linearized conservation equations for mass, mo- 

mentum and energy. The effect of a heat source on the acoustic 

field may also be deduced from these conservation equations. In 

this case, the analysis should describe the scattering of acoustic 

waves by the temperature and density gradients that result from 

mean heat release rate ¯̇
 Q, as well as account for the coupling be- 

tween the fluctuations of heat release ˙ Q 

′ and the acoustic pertur- 

bations. 1 

1 Here and in the following, overbars ¯. . . denote mean values, while primed quan- 

tities . . . ′ refer to fluctuations around the mean. 
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Fig. 1. A compact heat source in quasi-1D flow with flow perturbations u ′ , p ′ , ρ ′ 
at upstream (“1’’) and downstream (“2’’) locations, respectively. For a heat source 

at rest, the velocity of the heat source in the laboratory frame u s (t) = 0 , thus the 

location of the source, x̄ f , is constant in time. 

The configuration considered in the present paper is depicted 

in Fig. 1 . The heat source is regarded as a one-dimensional 

discontinuity. This is appropriate if the heat source is compact , i.e. 

if both acoustic and entropy wavelengths are much larger than 

the axial extent of the heat source. Moreover, it is often assumed 

that the heat source is fixed at position x̄ f . A derivation of thermo- 

acoustic coupling relations by analysis of the conservation laws for 

mass, momentum and energy as they apply for a compact heat 

source at rest can be found in several prior studies, see e.g., [10,15–

17] . 

However, paradoxical conclusions may result from the thermo- 

acoustic coupling relations for a heat source at rest. The first con- 

tradiction concerns the production of entropy waves by a heat 

source. The coupling relations for a heat source at rest imply that 

in general unsteady heat release ˙ Q 

′ � = 0 should result in the gener- 

ation of entropy waves, i.e. s ′ � = 0 downstream of the heat source, 

see [10,18,19] . However, in the case of a perfectly premixed flame 

with homogeneous fuel/air premixture, the presence of significant 

entropy waves (i.e. temperature inhomogeneities) downstream of 

the combustion zone is difficult to justify physically, because in the 

case of adiabatic and complete combustion, the temperature in- 

crease across the flame and thus also the temperature downstream 

of the flame should be constant. 

The second issue has been raised by Bauerheim et al. [17] for 

the case of a passive flame ( ˙ Q 

′ = 0 ) at rest, in the limit of vanishing 

mean flow Mach number. In the absence of mean flow, the energy 

conservation equation is reduced to conservation of volume flux, 

which implies that fluctuations of upstream (“1”) and downstream 

(“2”) velocities be equal, u ′ 1 = u ′ 2 . However, this is in apparent con- 

tradiction with mass conservation, which for M = 0 would seem to 

impose u ′ 
1 ̄
ρ1 = u ′ 

2 ̄
ρ2 . Bauerheim et al. [17] reexamined the quasi- 

1D conservation equations and observed that acoustic and entropy 

perturbations are coupled. At zero Mach number, a singularity in 

entropy is produced, which acts as an additional source term in 

the mass balance equation, which “explains why mass conserva- 

tion of fluctuations is satisfied at non-zero Mach number while 

volume flow rate is conserved at zero Mach number” [17] . Thus 

the paradox is resolved, but the conclusions that result from the 

mathematical arguments are not easily reconciled with physical in- 

tuition. 

For the two cases mentioned above, conclusions developed 

from linearized conservation equations for mass and energy are 

either apparently contradictory, or non-intuitive. This is rather un- 

satisfactory, since mathematical models should represent and clar- 

ify the actual physical problem. The physical meaning of the inter- 

dependency among entropy waves generation, unsteady heat re- 

lease and mass flow conservation needs to be re-examined and 

contextualized by revisiting the coupling relations and the under- 

lying assumptions. 

In this work, it will be shown how the issues described can be 

resolved by relaxing the assumption that the heat source is at rest. 

Instead, the flame front will be considered as a moving disconti- 

nuity, which implies that movement of the heat source must be 

taken into account in the conservation equations. Equations which 

describe the propagation of small flow disturbances across a mov- 

ing heat source were first derived by Chu [20,21] . Although the 

moving flame model has been used since in many studies, see e.g., 

[7,12,22–29] , its consequences on acoustic scattering and genera- 

tion of entropy wave have not been fully explored. The present pa- 

per will analyze these consequences, by verifying the validity of 

the equations with physical arguments and examples. 

In Section 2 , we will introduce the difference between a mov- 

ing heat source and a heat source at rest and explicate some 

consequences of movement of the heat source. In particular, the 

linearized conservation equations for perturbations of velocity, 

pressure and entropy across a moving heat source are analyzed 

( Section 3 ). Section 4 turns to the particular case of a moving pre- 

mixed flame front, with fluctuations in heat release rate, flame 

speed and flame surface area in response to upstream velocity per- 

turbations. Next, the consequences of the flame front movement 

on entropy generation and acoustic scattering are examined for 

both perfectly and non-perfectly premixed flame ( Sections 5 and 

6 ). Finally, after terminology is established and the main results 

of this study are presented, Section 7 discusses and contextualizes 

previous publications on the model of a moving flame [7,12,22–29] 

and a flame at rest [10,15–17,30–32] , respectively. 

2. Motivation 

In this section, we state the problems discussed in the previous 

section in mathematical terms and discuss some of the limitations 

that are implied with the application of the conservation equations 

of mass, momentum and energy to a heat source at rest. For the 

sake of simplicity, the case of a “passive source”, i.e. a heat source 

without fluctuations of the heat release rate, ˙ Q 

′ = 0 , will be con- 

sidered. 

In presence of perturbations, relevant variables are divided into 

a mean component, which varies spatially, and a fluctuating com- 

ponent, which in general is a function of both time and space: 

ϕ(x, t) = ϕ̄ (x ) + ϕ 

′ (x, t) . (1) 

For analysis of the perturbations across a compact heat source, 

a commonly adopted approach is to consider the linearized con- 

servation equations just upstream and downstream of a disconti- 

nuity. The equations for conservation of mass, momentum and en- 

ergy read (cf. [5,10,15–17,32,33] ): 

[ ρ ′ ū + u 

′ ρ̄] 2 1 = 0 , 

[ p ′ + ρ ′ ū 

2 + 2 ̄ρū u 

′ ] 2 1 = 0 , 

[ c p ̄T (ρ
′ ū + u 

′ ρ̄) + ρ̄ū (c p T 
′ + ū u 

′ )] 2 1 = 

˙ Q 

′ . 
(2) 

Angular brackets [ ϕ] 2 
1 

with sub-/super-scripts denote the dif- 

ference between values of a flow variable ϕ upstream (“1”) and 

downstream (“2”) of the jump, i.e. [ ϕ] 2 1 = ϕ 2 − ϕ 1 . As mentioned in 

the previous section, the source region is considered as infinitesi- 

mally thin (i.e. compact with respect to acoustic and, in presence 

of mean flow, to entropy waves [10] ) and fixed at position x̄ f in the 

stream-wise direction (see Fig. 1 ). The discontinuity is regarded as 

a “black-box’’, and its dynamic response to upstream perturbations 

is only represented by the source term 

˙ Q 

′ . 
In order to simplify the analysis, the fluctuating terms may 

be normalized by their respective mean values. Additionally, 

since flow regimes of interest are typically characterized by M 

� 1, terms of second or higher order in Mach number may be 
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