Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research B

journal homepage: www.elsevier.com/locate/nimb

Oxygen deficiency and excess of rutile titania (1 1 0) surfaces analyzed by ion scattering coupled with elastic recoil detection

Kei Mitsuhara, Taishi Matsuda, Hideki Okumura, Anton Visikovskiy, Yoshiaki Kido*

Department of Physics, Ritsumeikan University, Kusatsu, Shiga-ken 525-8577, Japan

ARTICLE INFO

Article history: Received 17 January 2011 Received in revised form 9 March 2011 Available online 11 May 2011

Keywords: Oxygen vacancies Oxygen adsorption TiO₂(1 1 0) Defect state Medium energy ion scattering Elastic recoil detection

ABSTRACT

Oxygen deficiency and excess of rutile titania (TiO₂) surfaces are important factors for catalytic activities of metal nano-particles on the TiO₂ supports. Medium energy ion scattering (MEIS; 80 keV He⁺) coupled with elastic recoil detection analysis (ERD; 150 keV Ne⁺) can determine the numbers of bridging O (O_{br}) vacancies (V_O) and excess O atoms adsorbed on the 5-fold Ti rows of TiO₂(1 1 0) surfaces. The amounts of V_O and adsorbed O were derived by H₂O and ¹⁸O₂ exposure followed by ERD and MEIS analyses, respectively. The present analysis revealed that only about a half of V_O are filled and a comparable amount of O atoms are adsorbed on the reduced TiO₂(1 1 0) surface after exposure to O₂ (1000 L; 1 L = 1 × 10⁻⁶ Torr s) at room temperature (RT). We also detected the adsorbed O for the hydroxylated TiO₂(1 1 0) after ¹⁸O₂ exposing reduced surface to O₂ at RT and what is the primary source of subsurface excess electronic charge, which acts as a leading part of the surface electrochemistry and gives the defect state in the band gap seen in the valence band spectra for reduced and hydroxylated TiO₂(1 1 0) surfaces.

© 2011 Elsevier B.V. All rights reserved.

BEAM INTERACTIONS WITH MATERIALS AND ATOMS

1. Introduction

Titanium oxide (TiO_2) has been widely applied to catalyst as a support of metal nano-particles. In this case, O-deficiency (vacancies) and excess O atoms on the surfaces are important factors for the catalytic activities of metal nano-particels on TiO_2 supports. There are still some debatable issues on the atomic and electronic structures of $TiO_2(1\ 1\ 0)$ surfaces after annealing and gas phase reactions. The local structures of the $TiO_2(1\ 1\ 0)$ surfaces with bridging O (O_{br}) vacancies (V_O) and excess O atoms (O adatoms: O_{ad}) have been extensively studied by scanning tunneling microscopy (STM) under ultra-high vacuum conditions [1–9]. However, it sometimes meets difficulty of identifying surface species and of following the structures change induced by chemical reactions at relatively high speed in a wide spatial range. In this respect, ion beam analysis sometimes combined with other techniques can be utilized complementarily.

In this work, we analyze quantitatively the structures of rutile $TiO_2(1\ 1\ 0)$ surfaces which react with O_2 and H_2O in a gas phase using high-resolution medium energy ion scattering (MEIS) combined with elastic recoil detection (ERD). The absolute amounts of adsorbed O atoms can be derived by MEIS using isotopically labeled ${}^{18}O_2$ and $H_2{}^{18}O$ gases. The scattering component from

¹⁸O is clearly separated energetically from that scattered from $^{16}\mbox{O}.$ It is also possible to estimate the absolute amount of V_{O} by detecting the H⁺ atoms recoiled from the surface after exposure to H₂O, because it is known that all the V₀ are filled very quickly with paired O_{br}H by exposing H₂O [4,7,8]. An H₂O molecule is dissociatively adsorbed in a Vo site to create a pair of ObrH and thus just the half of the detected H corresponds to the amount of V₀. Fig. 1 illustrates schematically the rutile $(1 \ 1 \ 0)$ surface with V₀, O_{ad}, O_{br}H and Ti interstitial (Ti-int).We prepared four kinds of surfaces; (i) reduced-(R-), (ii) hydroxylated-(H-), (iii) O-rich-(O-) and (iv) pseudo-O-rich (O*-)TiO₂(110) surfaces. The (110) surface was reduced by sputtering and then annealing at 870 K for 10 min in ultra-high vacuum (UHV). The H- and O-TiO₂(1 1 0) surfaces were obtained by exposing R-TiO₂(110) to H₂O at ~330 K and O_2 (1000 L) at room temperature (RT), respectively. The O^* - $TiO_2(1 \ 1 \ 0)$ surface was formed by exposing an H- $TiO_2(1 \ 1 \ 0)$ to O₂ at RT. All the analysis and sample preparation were performed in situ under UHV conditions (base pressure $\leq 2 \times 10^{-10}$ Torr) at the beamline 8 working at Ritsumeikan SR Center [10-12].

The aim of this paper is to show that ion beam techniques work as a very powerful tool to explore gas phase reactions and resultant structure change of reactive oxide surfaces. The reactivity comes from oxygen deficiency and excess in the subsurface region as well as hydroxyl group provided by water deposition. The dissociative adsorptions of O_2 and H_2O and the reactions of $O_{br}H$ with O_2 and of adsorbed O with CO are discussed quantitatively based on the surface electrochemistry.

^{*} Corresponding author. Tel.: +81 77 561 2710; fax: +81 77 561 2657. *E-mail address:* ykido@se.ritsumei.ac.jp (Y. Kido).

⁰¹⁶⁸⁻⁵⁸³X/ $\$ - see front matter @ 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.nimb.2011.05.007

Fig. 1. Schematics of a rutile $TiO_2(1 \ 1 \ 0)$ surface with V_O , O_{ad} , $O_{br}H$ and Ti-int. V_O is created on the reduced surface and O- $TiO_2(1 \ 1 \ 0)$ has O_{ad} and unfilled V_O , while H- $TiO_2(1 \ 1 \ 0)$ surface has paired $O_{br}H$ without V_O . All of them involve Ti-int near the surfaces to some extent.

2. Experiment

As mentioned before, we prepared four kinds of surfaces, R-, O-, *H*- and O^* -TiO₂(1 1 0). Initially as-supplied TiO₂(1 1 0) substrates were annealed at 1070 K for 60 min in UHV to be conductive and as a result the color changed into blue from transparency. Such a high-temperature annealing creates O vacancies and Ti interstitials, which act as a color center and an electron donor, respectively [3,13]. The R-TiO₂(110) surface was formed by several cycles of 0.75 keV Ar⁺-sputtering and annealing at 820 K for 5 min in UHV followed by a final treatment of annealing at 870 K for 10 min. The H- and O-TiO₂(1 1 0) surfaces were obtained by exposing R-TiO₂(1 1 0) to H₂O at \sim 330 K (10 L, 1 L = 1 \times 10⁻⁶ Torr s) and to O₂ $(5 \times 10^{-6} \text{ Torr})$ for 100 and 200 s (500 and 1000 L,) at RT, respectively. Fig. 2 shows the UPS spectra observed for R-, H- and $O-TiO_2(110)$ surfaces at a photon energy of 50 eV under normal emission condition ($[1 \bar{1} 0]$ -azimuth). The left and right insets correspond to magnified spectra around OH 3σ (hybridization of H 1s and O 2p_z orbitals)[7,14] and Ti 3d defect state signals, respec-

Fig. 2. UPS spectra observed at photon energy of 50 eV for *R*-, *H*- and O-TiO₂(1 1 0) surfaces, which are denoted by dashed, thick and thin solid curves, respectively. The left and right insets are magnified spectra around the signals of OH 3σ and defect state, respectively.

tively. From such UPS spectra we can evaluate the presence of the $O_{br}H$ and V_{0} . It is difficult to prepare a stoichiometric surface by annealing in O₂ ambience. According to STM observations, Ti interstitials (Ti-int) segregated on the surface react with O₂ to create Tirich oxide clusters initially and then the surface is renewed by a stoichiometric TiO_2 layer [3,7,13]. This cycle is repeated and thus the condition to form a stoichiometric surface depends upon annealing temperature, annealing time, O₂ pressure and the density of Ti interstitials. Thus a stoichiometric region can be confirmed locally only by STM. The H-TiO₂(1 1 0) after exposure to O₂ at RT (200 L) is denoted by O^* -TiO₂(1 1 0), which may have O_{ad} and/or O_xH_y species without V_O and O_{br}H. Note that all the samples mentioned above have Ti-int segregated near the surfaces to some extent. The quality of the surfaces prepared here was carefully checked by valence band photoemission spectra (UPS), a 1×1 pattern observed by reflection high-energy electron diffraction (RHEED) and the shapes of the scattering components from Ti and O near the surface in MEIS spectra, as shown in Fig. 3a and b for O-TiO₂(1 1 0). Actually, if TiO_x(x < 2) clusters grow on the surface, the scattering components from Ti and O have significantly broad tails in MEIS spectra.

Fig. 3. (a) MEIS spectrum (circles) observed for 80 keV He⁺ ions scattered from Ti atoms of O-TiO₂(1 1 0) under double alignment condition: [1 0 0]-incidence and [0 1 0]-emergence. Solid curve corresponds to simulated spectrum assuming a stoichiometric surface. (b) MEIS spectrum (circles) observed for 80 keV He⁺ ions scattered from O atoms of O-TiO₂(1 1 0).

Download English Version:

https://daneshyari.com/en/article/1685909

Download Persian Version:

https://daneshyari.com/article/1685909

Daneshyari.com