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a b s t r a c t

The stable computation of linearly constrained, multiphase, chemical equilibrium compositions is an im-

portant topic for a wide range of industrial and academic applications. Numerous computational methods

have been developed to solve such problems which are, in general, susceptible to failure under certain con-

ditions due to numerical stiffness. In this work, we present a Gibbs function continuation method for lin-

early constrained multiphase equilibrium calculations. The method converts the nonlinear Element Potential

Equations - derived from the minimization of the mixture Gibbs free energy using the Lagrange multiplier

technique - into an initial value problem which can be stably integrated through the use of a property of lin-

ear least squares solutions. The stability and convergence properties of the proposed method are derived and

it is shown that the single phase method arises as a special case of the multiphase algorithm when only one

phase is considered. Two test cases are presented to clarify and demonstrate the accuracy and robustness of

the method.

© 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

The efficient and robust computation of multiphase, constrained

equilibrium compositions is an important topic over a wide range of

fields including combustion, aerospace and (bio)chemical engineer-

ing, metallurgy, paper processes, and the design of thermal protection

systems for atmospheric entry vehicles (e.g., [1–6]). For a detailed

history and list of applications, the reader is referred to the treatises

by van Zeggeren and Storey [7] or Smith and Missen [8].

Prior to the work of White et al. [9], the equilibrium constant for-

mulation was primarily used to compute equilibrium compositions

for ideal, gas phase mixtures. The equilibrium constant formulation

works by assigning formation reactions to each species based on a

set of base or component species which are chosen a priori for the

given reaction system. Kuo [10] cites several disadvantages that hin-

dered researches using this method including difficulties in extend-

ing the method to non ideal equations of state, testing for the pres-

ence of condensed species and numerical complications with the use

of component species.

In 1958, White et al. [9] introduced the concept of free-energy

minimization and proposed a numerical solution technique using

the method of steepest decent. White [11] later elaborated on the

advantages of free-energy minimization and the use of element po-
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tentials in the solution of equilibrium compositions, including the

possibility to treat any general chemical system without the neces-

sity of specifying the formation reactions. In addition, the use of ele-

ment potentials allowed for the solution of linear systems whose size

scaled with the number of elements rather than species, present in

the mixture. This fact alone offers a significant computational advan-

tage when considering large chemical systems.

Today, both the equilibrium constant formulation and the free-

energy minimization methods are widely used. Most commercial and

general purpose research codes implement various numerical meth-

ods for solving the free-energy minimization problem, however the

equilibrium constant formulation is still used in certain applications

[4,12]. Perhaps one of the most widely used equilibrium codes today

is the Stanford-JANAF (STANJAN) code by Reynolds [13] who popular-

ized the element potential method for constrained Gibbs free-energy

minimization by developing a numerical solution procedure to the

minimization problem which solves the so-called dual problem. Part

of the success of the STANJAN method lies in its powerful initializa-

tion and preconditioning procedures which help make STANJAN ex-

tremely robust for most problems. The Chemical Equilibrium with

Applications (CEA) code developed by Gordon and McBride [14,15]

is also used heavily, helped by the success of the detailed thermo-

dynamic database developed at NASA Glenn Research Center [16],

which it employs.

In addition to the normal mass balance constraints, so called “gen-

eralized constraints” [17] on the equilibrium solution have been used

in a wide range of applications [3] and in particular, are an integral

component of the Rate-Controlled Constrained Equilibrium (RCCE)
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[17–31] method. Some important examples of constraints used in

the RCCE method include constraints on the total number of moles,

the number of free valence electrons, and the number of O-O bonds,

among many others [3,30]. Bishnu et al. [32,33] added the ability

to include general linear constraints on the equilibrium solutions to

both STANJAN and CEA. They found that, under certain conditions,

both the constrained versions of STANJAN and CEA failed to converge

to a solution. In general, these situations arise when the linear con-

straints force the equilibrium composition near the boundary of the

feasible region imposed by the hyperplane defined by the constraints.

In an effort to provide a provably robust, constrained equilibrium

solver, Pope [34,35] developed the Gibbs Function Continuation (GFC)

method which solves the Element Potential Equations for an ideal gas

mixture under general linear constraints. Since its development, the

GFC method has been successfully embedded into a variety of more

complex turbulent combustion modeling algorithms, including the

eddy dissipation concept (EDC) [36,37], RCCE using a greedy algo-

rithm with local improvement (RCCE-GALI) [29], and the Relaxation–

Redistribution method (RRM) [38]. One drawback of the GFC method

however, is that it is only capable of computing equilibrium compo-

sitions of gas phase mixtures.

The purpose of this paper is to generalize the GFC method to

mixtures with multiple ideal phases and to provide a more rigor-

ous mathematical analysis of its robustness and stability. The new

method is referred to as the multiphase Gibbs function continuation

(MPGFC) method. In Section 2, the necessary equations to describe

constrained chemical equilibrium for any number of ideal phases are

reviewed. Section 3 develops the mathematical basis of the MPGFC

method, followed by a detailed overview of a practical implementa-

tion of the algorithm in Section 4. Finally, two numerical test cases

will be presented to demonstrate some key features of the algorithm

in Section 5 before a few concluding remarks.

2. Constrained chemical equilibrium

2.1. Free energy minimization

Consider a chemical system composed of any number of ideal

phases. The set of indices which denote all species in this system is

S = {1, . . . , nS} = ∪m∈PSm where nS is the total number of species

considered, P = {1, . . . , nP} is the set of phase indices with nP the

number of phases, and Sm denotes the set of species indices belong-

ing to phase m. Note that each species belongs to a single phase. If a

particular chemical species occurs in (for example) three phases, then

it is treated as three different species. Since all phases are ideal, the

normalized Gibbs function for this system is

G̃ ≡ G

RT
=

∑
m∈P

∑
j∈Sm

Nj

(
g̃ j + ln Nj − ln N̄m

)
, (1)

where Nj is the number of moles of species j and g̃ j(T, p) is the non-

dimensional Gibbs function of pure species j at the system tempera-

ture T and pressure p, R is the molar universal gas constant, and N̄m is

the total moles in phase m, sometimes referred to as the phase moles

of phase m.

N̄m =
∑
j∈Sm

Nj, ∀ m ∈ P . (2)

The vector of nP phase moles, N̄, can thus be expressed as

N̄ = PT N, (3)

where N ∈ R
nS is the vector of species moles and P ∈ R

nS×nP is a

“phase summation matrix” whose elements are defined as

Pjm ≡ δpjm. (4)

The symbol δp jm is the familiar Kronecker Delta function and the sub-

script pj is used to denote the index of the phase in P to which the

species j belongs. In other words, for all m in P and all j in Sm, p j = m.

Table 1

Example constraint matrices B and P for a 5-species CO2 mixture with con-

straints placed on the total mixture moles, N̄mix.

B columns P columns

Species C O N̄mix Gas C(gr)

C 1 0 1 1 0

CO 1 1 1 1 0

CO2 1 2 1 1 0

O2 0 2 1 1 0

C(gr) 1 0 1 0 1

The two notations of the phase index are used for convenience, de-

pending on the situation. For instance, Eq. (1) may be equivalently

written as

G̃ =
∑
j∈S

Nj

(
g̃ j + ln Nj − ln

∑
k∈Sp j

Nk

)
. (5)

The non-dimensional Gibbs function for a pure species j is given

by

g̃ j(T, p) = Hj(T)

RT
−

S◦
j
(T)

R
+

{
ln

p

p◦ , j ∈ gas phase

0, otherwise

, (6)

where Hj is the molar enthalpy of pure species j and S◦
j
, its molar

entropy evaluated at the standard state pressure p°.
If the total moles of each element i in the mixture is denoted by

ce
i
, then conservation of mass dictates that∑

j∈S
Be

jiNj = ce
i ∀ i ∈ E, (7)

where Be
ji

is the stoichiometric coefficient for the ith element in

species j. E = {1, . . . , nE} denotes the set of element indices for the

nE considered elements in the mixture. Eq. (7) is often referred to as

the mass balance relations or constraints. It states that the available

atoms in a mixture must be shared amongst each of the species in the

mixture (regardless of phase). In addition to these physically imposed

constraints, it is often useful to impose other constraints on the sys-

tem. Therefore, we consider the set of nG additional linear constraints

on the number of moles of each species, G = {1, . . . , nG}, such that∑
j∈S

Bg
ji
Nj = cg

i
∀ i ∈ G. (8)

Using matrix notation, the total constraints imposed on the composi-

tion are thus given by

BT N = c, (9)

where

B =
[
Be Bg

]
∈ R

nS×nC
, c =

[
ce

cg

]
∈ R

nC
, (10)

and nC = nE + nG are the total number of linear constraints whose

indices compose the set C = {1, . . . , nC}. As a clarifying example, con-

sider a 5-species mixture composed of four gaseous species, C, CO,

CO2, and O2, and solid graphite, C(gr), with an imposed constraint

on the total mixture moles, N̄mix. Table 1 shows the corresponding B

and P matrices associated with this system. Note that the first two

columns of B correspond to the mass balance constraints in Eq. (7)

while the last column corresponds to the constraint on the total mix-

ture moles.

For a given B, c, and a fixed temperature and pressure, the local

thermodynamic equilibrium (LTE) composition for a chemical system

is the one which minimizes G̃, Eq. (1), while satisfying the linear con-

straints in Eq. (9).

2.2. Constraint potentials

The Lagrange multiplier method is a well known technique for

solving constrained minimization problems and will be used here. To
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