Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/0168583X)

Nuclear Instruments and Methods in Physics Research B

journal homepage: www.elsevier.com/locate/nimb

Electrical properties changes induced by electron radiation at $TiO₂/Si$ interface

Chengshi Liu, Dengxue Wu *, Lili Zhao, Zhijun Liao

Department of Physics and Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, PR China

article info

Article history: Received 25 May 2009 Received in revised form 7 January 2010 Available online 11 January 2010

Keywords: $TiO₂/Si$ structures Electron radiation Flat-band voltage

1. Introduction

One of the most challenging problems in the microelectronics industry is looking for an alternative gate dielectric to $SiO₂$ for very large-scale integrated circuits (VLSI) with sub-100-nm channel length CMOS devices [\[1–3\]](#page--1-0). In order to follow VLSI, the gate oxide thickness has been reduced to less than 2 nm, but large leakage currents can arise in these devices due to the direct tunneling from the substrate to the gate electrode. Therefore alternative gate dielectrics, such as Al_2O_3 [\[4\]](#page--1-0), HfO₂ [\[5\],](#page--1-0) ZrO₂, Y₂O₃, TiO₂ [\[6\]](#page--1-0), Ta₂O₅ and the silicates have been studied, focusing on their larger dielectric constants, which can reduce the tunneling leakage current and improve the reliability while scaling the capacitance equivalent oxide thickness (CET) below the direct tunneling limit of $SiO₂$.

Among these high- k materials, titanium dioxide, TiO₂ is a potential candidate because of its high dielectric constant (up to 100) and good thermal stability on silicon [\[7\]](#page--1-0). However, studies of the radiation response of these materials are rare. Devices are exposed to various forms of radiation in space, for example, electrons, protons, neutrons, and heavy ions. This radiation affects these devices, causing temporary loss of data to catastrophic failure [\[8–10\]](#page--1-0), so it is very important to study their radiation response. The effects of ionizing radiation on MOS devices, has been studied extensively since the 1960s, with the aim of developing radiation-hardened MOS devices (primarily silicon dioxide–silicon) [\[11–14\].](#page--1-0) A build-up of radiation-induced positive charges in the oxide layer and an increase in the interface traps at the $Si-SiO₂$ interface can cause serious degradation of the performance of the devices [\[15–](#page--1-0) [18\]](#page--1-0). However, little work has been done to study the effects of ionizing radiation on MOS devices based TiO₂ gate dielectric. Zhang

ABSTRACT

TiO2/Si structures were fabricated by electron beam evaporation, and exposed to electron beam irradiation to investigate their electrical properties using the high frequency capacitance–voltage measurements. It was found that samples annealed in oxygen became more radiation resistant than unannealed samples, which can be explained by the Ti valence variations induced by radiation. The samples were characterized by X-ray diffraction to show the $Ti₂O₃$ crystalline phase transformed to anatase-crystalline phase after oxygen annealing.

Published by Elsevier B.V.

**BEAM
INTERACTIONS
WITH
MATERIALS** MATERIALS
AND ATOMS

et al. selected TiO₂ as a gate dielectric fabricated by DC sputtering [\[19\]](#page--1-0) and studied the effect of ionizing radiation. He pointed out that Ti ion valence variations induced by electron radiation at the $TiO₂/Si$ interface was beneficial to the stability of $TiO₂/Si$ structure exposed to ionizing radiation. In our work $TiO₂$ film as a gate dielectric material was fabricated by electron beam evaporation. Meanwhile the radiation effects on the pre-grown TiO₂/Si structures were studied. The radiation effects on the $TiO₂/Si$ structures after annealing in oxygen were also studied.

2. Experimental

The TiO₂ films were fabricated on p-type $(1 0 0)$ silicon substrate by electron beam evaporation, with the substrate temperature at 300 \degree C, and the film thickness about 10 nm. The pregrown samples and samples annealed at 500 $\mathrm{^{\circ}C}$ in oxygen for 4 h were exposed to electron radiation with energy 1.5 MeV, with fluences from 1×10^{14} /cm² to 1×10^{15} /cm². Finally, the flat-band voltage shift (ΔV_{FB}) were obtained by HF C–V measurements; in addition, the synthesized TiO₂ film was characterized by X-ray diffraction (XRD, DX1000, Cu Ka radiation) at grazing incidence.

3. Results and discussion

[Fig. 1](#page-1-0) shows 1-MHz C–V curves of the samples, with fluences of $1 \times 10^{14}/\text{cm}^2$, $2 \times 10^{14}/\text{cm}^2$, $4 \times 10^{14}/\text{cm}^2$, $6 \times 10^{14}/\text{cm}^2$ and 1×10^{15} /cm². [Fig. 1](#page-1-0)(a) and (b) both show the value of flat-band voltage shift of the first and the fourth measurements. In the inset of [Fig. 1](#page-1-0)(a), the value of flat-band voltage shift is less than 0.4 V with the total fluence below 4×10^{14} /cm². With the fluence more than 6×10^{14} /cm², the value of flat-band voltage shift is high, and the well sidestep can be found in the C–V curve. The value of

^{*} Corresponding author. Tel./fax: +86 28 8541 2031. E-mail address: wudengxue@scu.edu.cn (D. Wu).

Fig. 1. 1-MHz C-V measurements on pre-grown TiO₂/Si structure and TiO₂/Si structure after electron radiation: (a) the first measurement on samples of different fluence; (b) the fourth measurement on samples of different fluence. The insets show the change of $\Delta V_{\rm BF}$ with increase in the total fluence.

 $\Delta V_{\rm BF}$ increases to 3.92 V with a fluence more than 6 \times 10¹⁴/cm², shown in Fig. 1(b), but it is nearly unchanged for a fluence less than 4×10^{14} /cm². The value of $\Delta V_{\rm BF}$ increased after a number of measurements.

Fig. 2 shows the number of 1-MHz $C-V$ measurements on TiO₂/ Si structure after electron radiation, measured four times per sample. With a fluence of 1 \times 10¹⁴/cm², the value of $\Delta V_{\rm BF}$ is nearly unchanged with the number of measurements in Fig. 2(a); however, the value of ΔV_{BF} increases with the number of measurements in Fig. 2(b) when the sample was irradiated with a fluence of 1×10^{15} /cm². Thus the measurement process (or gate-voltage) caused effect on ΔV_{FB} with high fluence radiation to certain extent.

Electron irradiation of TiO₂/Si structures mainly results in two processes: radiation-induced electron–hole pairs and radiation-induced chemical composition variation. Chemical composition variation mainly comes from the TiO₂-Si interface, which is a transition layer composed of a non-stoichoimetric oxide TiO_x $(x < 2)$, especially in the TiO₂ film by electron beam evaporation. The Ti valence maybe changed by irradiation, via the $Ti⁴⁺$ and Ti^{3+} states, however, this transition is different between low fluence and high fluence.

With low fluence radiation, the transition from Ti^{4+} to Ti^{3+} state maybe predominate, and the chemical composition can be prepared by the following reaction:

$$
2TiO_2 \rightarrow Ti_2O_3 + O \tag{1}
$$

Thus the excess oxygen forms electron traps in the transition layer and captures the radiation-induced electrons, which has two sideeffects: on the one hand, forming negative charges (O^{2-}) to compensate the radiation-induce positive charges, so the flat-band voltage shift ΔV_{FB} is low; on the other hand, fixing the radiationinduced electrons on the trap not to be driven out of the insulator layer by the gate-voltage, so ΔV_{FB} is nearly unchanged after four times with low fluence irradiation.

With high fluence radiation, the energy was enough high to change the valence from the Ti^{3+} into Ti^{4+} state in the transition layer, so Eq. (2) is the dominant process, and the chemical composition could be presented as follows:

$$
2Ti2O3 \to 3TiO2 + Ti
$$
 (2)

Thus excess titanium can capture radiation-induced holes forming positive charge in the transition layer, which shifts the C–V curve to a very negative gate-voltage, so the value of ΔV_{FB} was high for high fluences. Without negative charge traps, the radiation-induced electrons were only located on neutral traps, and could easily be driven out the insulator layer by a gate-voltage. Therefore, with high fluence radiation, these radiation-induced electrons were droved out the insulator layer by gate-voltage after some time

Fig. 2. Number of 1-MHz C–V measurements on TiO₂/Si structure after electron radiation: (a) with fluence of 1 \times 10¹⁴ e/cm², (b) 10 \times 10¹⁴ e/cm².

Download English Version:

<https://daneshyari.com/en/article/1686773>

Download Persian Version:

<https://daneshyari.com/article/1686773>

[Daneshyari.com](https://daneshyari.com)