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a b s t r a c t

Lennard–Jones parameters for use in combustion modeling, as transport parameters and in pressure-
dependent rate-coefficient calculations as collision rate parameters, are calculated from accurate full-
dimensional intermolecular potentials. Several first-principles theoretical methods are considered. In
the simplest approach, the intermolecular potential is spherically averaged and used to determine
Lennard–Jones parameters. This method works well for small species, but it is not suitable for larger
species due to unphysical averaging over the repulsive wall. Another method considered is based on
full-dimensional trajectory calculations of binary collisions. This method is found to be very accurate,
predicting Lennard–Jones collision rates within �10% of those obtained via tabulated (experimentally-
based) Lennard–Jones parameters. Finally, a computationally efficient method is presented based on
one-dimensional minimizations averaged over the colliding partners’ relative orientations. This method
is shown to be both accurate and efficient. The good accuracy of the latter two approaches is shown to be
a result of their explicit treatment of anisotropy. The effects of finite temperature vibrations and multiple
conformers are quantified and are shown to be small. The choice of potential energy surface has a some-
what larger effect, and strategies based both on efficient semiempirical methods and on first-principles
direct dynamics are considered. Overall, 75 systems are considered, including seven baths, targets as
large as heptane, both molecules and radicals, and both hydrocarbons and oxygenates.

� 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

Non-bonding intermolecular potentials play an important role
in combustion chemistry. First and foremost (from our point of
view), they govern collisional energy transfer from highly vibra-
tionally excited molecules. In turn, energy transfer can be a kinetic
bottleneck and largely controls the rates of unimolecular reactions
at low pressure, both thermal and chemically-activated—most
notably the low-pressure-limit rate coefficients of thermal dissoci-
ation reactions. However, these same potentials also determine
transport properties—the coefficients of diffusion, viscosity, heat
conduction, and thermal diffusion—that are used in flame model-
ing [1,2]. Although some work has appeared in these areas rela-
tively recently [3], there is still a dearth of information that can
be applied directly in chemical kinetics and combustion modeling.

In two recent papers [4,5], we have shown that a relatively
inexpensive electronic-structure method, MP2/aug0-cc-pVDZ, gives
results for intermolecular potentials that are very close to those
calculated from the high-level QCISD(T)/CBS method for CH4 inter-

acting with several small-molecule bath gases (He, Ne, H2, and
CH4). Furthermore, we parameterized a very efficient semiempiri-
cal potential energy surface for hydrocarbons interacting with typ-
ical atomic and diatomic baths based on the QCISD(T)/CBS
interaction energies. Using these potentials we calculated energy
transfer rates using trajectories that give accurate low-pressure
rate coefficients for the CH4ðþMÞ ¢ CH3 þHðþMÞ reaction, with
M being any one of several typical bath gas molecules. Subsequent
work (as yet unpublished for CH4 + H2O, CH3OH + He, and CxHy + -
M) has reinforced our conclusion that the MP2 and semiempirical
methodologies can be workhorses for obtaining collisional energy
transfer rates in highly vibrationally-excited molecules, and hence
accurate unimolecular rate coefficients at low pressure.

The purpose of the present investigation is considerably less
ambitious than that described above, but it is still important. We
want to use the intermolecular potential energy methods dis-
cussed above to calculate accurate Lennard–Jones collision rates
(or frequencies) with minimal computational effort. In unimolecu-
lar reaction rate theory [6,7], one is always referring to hDEi or
hDEdi, the average energy transferred in a collision or the average
energy transferred in a deactivating collision. For these quantities
to have meaning one must first define what a collision is. There
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is enormous flexibility in this definition [8,9], but by convention it
is normally defined in terms of a Lennard–Jones collision rate. The
origin of the use of the Lennard–Jones collision rate lies in the the-
ory of transport processes. It is worthwhile to review this point
briefly.

First, if one has a binary mixture of hard-sphere molecules, the
collision rate of a molecule of species i with molecules of species j
is [1]

Zij ¼ pr2
ijnj�gij; ð1Þ

where nj is the number density of j-type molecules; �gij ¼ 8kBT
plij

� �1=2
is

the average relative speed for i, j collisions; kB is Boltzmann’s con-

stant; lij ¼
mimj

miþmj
is the reduced mass for i, j collisions; T is the tem-

perature; and rij ¼ 1
2 ðri þ rjÞ is the collision diameter (with ri and

rj the diameters of the two spheres). More generally, we will define
rij as the intermolecular separation where the intermolecular po-
tential VðrÞ equals zero; this is the collision diameter for hard
spheres. In the same hard-sphere model the binary diffusion coeffi-
cient is

Dij ¼
3

16
ð2pk3

BT3=lijÞ
1=2

ppr2
ij

; ð2Þ

where p is the pressure. Defining zij ¼ Zij=nj to be a hard-sphere
‘‘collision rate coefficient’’, the diffusion coefficient becomes

Dij ¼
3

16

�gijð2pk3
BT3=lijÞ

1=2

pzij
: ð3Þ

Thus all of the dependence of Dij on the potential is absorbed into zij.
If one considers the Lennard–Jones potential,

VðrÞ ¼ 4eij
rij

r

� �12
� rij

r

� �6
� �

; ð4Þ

where rij was defined above and eij is the well depth [or any poten-
tial of the form ½VðrÞ ¼ ef ðr=rÞ�, the diffusion coefficient can be
written as

Dij ¼
3

16
ð2pk3

BT3=lijÞ
1=2

ppr2
ijX
ð1;1Þ� ; ð5Þ

where X(1,1)� is a reduced collision integral that depends on the
intermolecular potential. Unless otherwise indicated, we have used
the term ‘‘Lennard–Jones potential’’ to mean the 12-6 Lennard–
Jones potential in particular, as in Eq. (4). This form of the Len-
nard–Jones potential was used almost exclusively in the present
work; the ‘‘9-6 Lennard–Jones potential’’ was also considered
briefly. Eq. (5) suggests that, by analogy with the hard-sphere case,
we define the collision rate coefficient as

zij ¼ pr2
ijX
ð1;1Þ��gij: ð6Þ

One can view this as a general result with rij and X(1,1)� evaluated
for the particular potential under consideration (X(1,1)� = 1 for hard
spheres). Results analogous to Eq. (6) can also be derived using the
viscosity and conductivity [1], but in these cases X(2,2)�, another re-
duced collision integral, replaces X(1,1)�. We shall not be concerned
with the precise definition of the collision integrals here except to
note that their values are readily obtainable in tabular form. We
are most interested in diffusion coefficients and hence in X(1,1)�,
but the Lennard–Jones potential parameters that we determine
can be used to calculate any of the reduced collision integrals.
X(1,1)� and X(2,2)� are usually very similar in magnitude, commonly
differing by less than 10%.

One is tempted to think that this is all well and good, but real
molecules are not point particles (or hard spheres). They have
structure—their potential depends on more than just the distance

between the centers of mass of the two colliding molecules. Inter-
estingly, high level quantum scattering calculations on ab initio
potential energy surfaces show that transport properties can be
computed quite accurately by using only the ‘‘spherically-aver-
aged,’’ isotropic part of the potential, i.e. by assuming point parti-
cles, at least for small molecules [10–12]. Also, the decades-old
practice of fitting experimental data to Lennard–Jones potentials
suggests that this simplification may be accurate.

In the present article we discuss different methods of obtaining
Lennard–Jones parameters from detailed, full-dimensional
intermolecular potentials. We compare the results with the exper-
imental results available, normally by comparing collision rate
coefficients for the different sets of Lennard–Jones parameters.
We primarily consider cases where helium is one of the collision
partners. This simplifies the electronic-structure calculations and
eliminates any effects of dipole–dipole interactions. The pure-gas
parameters can be determined from whatever combining rules
one may wish to use, as discussed recently by Brown et al. [3]

We would be remiss if we did not mention evidence that the
Lennard–Jones potential may be too repulsive at short distances,
leading to the underprediction of some diffusion coefficients at
high temperatures by �20% [13]. Paul and Warnatz [14] suggest
that an exponential repulsive part may be more appropriate at high
temperatures. The present methodology could be generalized to
obtain potential parameters for such a potential as well. However,
for now the Lennard–Jones potential is still in common use, largely
because it is the potential used in CHEMKIN [15]. Brown et al. [3]
recommend the use of Lennard–Jones parameters in combustion
modeling over other forms, as well. We will focus on determining
those parameters in the present article; the effect of using a softer
repulsive wall as in the 9-6 Lennard–Jones potential will only
briefly be considered. We also want to note that transport proper-
ties, particularly thermal conductivity and viscosity, depend on
some other molecular properties, most notably dipole moments
and polarizabilities. These properties can be computed accurately
using relatively low-level electronic structure methods. We hope
to address this issue in the near future.

2. Theory

Here we describe several methods for calculating spherically-
averaged intermolecular potentials and/or Lennard–Jones collision
parameters for a molecule or radical (A) interacting with a bath gas
atom or molecule (B). All of the methods involve averaging the full-
dimensional anisotropic intermolecular potential, V(R), in some
way over the colliding species’ relative orientation and internal
structures. This is simpler than evaluating the collision integrals
directly using the full anisotropic potential. Instead, Lennard–Jones
collision rate coefficients, z, are obtained from the calculated Len-
nard–Jones parameters r and e using Eq. (6) and tabulated [16] val-
ues of X(1,1)�.

The total geometry of the interacting binary A + B system can be
written as R � (RA, RB, RX, r), where RA labels the internal coordi-
nates of the target species, RB labels the internal coordinates of
the bath gas (if any), and the remaining coordinates define the rel-
ative orientation of the target and bath, RX, and their center-of-
mass separation, r. The full-dimensional intermolecular potential
is defined relative to the separated unrelaxed species, i.e.,

VðRÞ ¼ EðRÞ � EAðRAÞ � EBðRBÞ; ð7Þ

where E(R) is the total energy of the interacting target and bath gas
evaluated at R, EA(RA) is the energy of the isolated target molecule
or radical evaluated at RA, and EB(RB) is the energy of the isolated
bath gas atom or molecule evaluated at RB (which for atomic baths
is zero).
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