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Shell correction in stopping theory
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Abstract

The shell correction in the stopping force on a point charge is shown to consist of two distinct contributions, a kinematic correction for
the neglect of orbital motion and a mathematical correction for an asymptotic expansion limited to high projectile speed. The latter can be
identified by separating Bloch�s expression for the stopping number into the classical Bohr contribution and an inverse-Bloch correction.
� 2005 Elsevier B.V. All rights reserved.
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There are three obvious problems with the shell correc-
tion in stopping theory:

• the name is not particularly descriptive,
• the definition is ambiguous, and
• there is no agreement about its physical origin.

These problems are mutually related. Leaving aside the
name for a moment and considering the definition, we
write the electronic stopping force on a point charge Z1e

with a velocity v in a medium with NZ2 electrons per vol-
ume in standard form

� dE
dx

¼ 4pZ2
1Z2e4

mv2
NL. ð1Þ

Bethe evaluated the stopping number L within the first
Born approximation in both a nonrelativistic [1] and a
relativistic [2] version. Although the shell correction has a
relativistic aspect, discussion of the above three points does
not require to include it in the present discussion. There-
fore, relativity will be ignored here.

Within this limitation, the stopping number LBorn may
be written in the form

LBorn ¼
1

2

X
n

Z
dQ
Q

fn0ðQÞ; ð2Þ

where the fn0(Q) are generalized oscillator strengths, the
limits of the Q-integral are specified by (�hxn0)

2
6 2mv2Q,

and xn0 is a transition frequency in the target atom from
its ground state to state n.

The famous Bethe formula approximates the stopping
number by

LBethe ¼ ln
2mv2

I
; ð3Þ

where the logarithmic mean excitation energy I is uniquely
defined over dipole oscillator strengths.

Eq. (3) is an asymptotic formula valid at high speed. It
breaks down at low speed and becomes unphysical for
2mv2 < I, whereas the exact expression (2) cannot give a
negative stopping number if the target atom is in its ground
state. Hence, at low velocities, explicit evaluation is re-
quired either of Eq. (2) or of the difference

DL ¼ LBorn � LBethe. ð4Þ
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Numerous estimates of this quantity may be found in the
literature, starting from [3]. An extensive review may be
found in [4].

Eq. (4) defines the shell correction DL uniquely within
the range of validity of the first Born approximation. Prob-
lems arise with the inclusion of higher orders in the Born
series, the Barkas–Andersen correction, as well as the
Bloch correction. Both become significant in the velocity
range where the shell correction is appreciable.

Early estimates of the Barkas–Andersen correction [5,6]
invoke logarithmic expressions much like Eq. (3) which
turn negative at some velocity. Evidently, such terms need
a shell correction. Does this have to be included in DL?
And if so, which of several logarithmic expressions pro-
posed in the literature should be the reference standard?

A similar situation is found for the Bloch correction [7],

DLBloch ¼ wð1Þ �Rew 1þ i
Z1e2

�hv

� �
; ð5Þ

where w(f) = d lnC(f)/df. When this is added to LBethe, one
arrives at the Bohr stopping formula [8] at the low-velocity
end. Bohr stopping is likewise governed by a logarithmic
stopping number that turns negative at some value of the
argument and hence needs to be corrected. That correction
differs from DL. Hence, there must be a shell correction to
the Bloch term. Is this to be included in DL, or is it some-
thing else?

Clearly, there is an ambiguity about the basic definition
of the shell correction. One way to resolve this is by keep-
ing to the original definition (4), as was done in a recent
study of aluminium [9]. However, evaluation of a shell cor-
rection so defined warrants attention to the corresponding
corrections in higher-order Born terms and the Bloch cor-
rection. Failure to do so may severely limit the usefulness
of an improved scheme.

Note that although a correction to a correction may be
small, Barkas–Andersen and Bloch terms may become
comparable in magnitude to LBethe around and below the
stopping maximum, dependent on the ion–target
combination.

At this point, let us look at the origin of the shell correc-
tion. According to Fano [10], DL may, for a one-electron
atom, be written as

DL ’ �hv2ei
v2

� hv4ei
2v4

� 5p
3

v0
v

� �4

a30qð0Þ; ð6Þ

where ve is the orbital velocity and q(r) the electron density at
a distance r from the nucleus. Here, the two first terms indi-
cate that the orbital motion of the target electrons has not
been fully taken into account in Eq. (3). However, the third
term has a different form and, more importantly, the expan-
sion Eq. (6) cannot be carried further since hv6ei diverges.

Similar indications emerge from the work of Lindhard
and Winther [11] who found

DL ¼ � 3

5

v2F
v2

� 3

14

v4F
v4

� � � ð7Þ

for stopping in a Fermi gas with the Fermi speed vF. It is
easily verified that this is equivalent to the first two terms
in Eq. (6).

Eqs. (6) and (7) indicate a strong connection between the
shell correction and the orbital motion of the target elec-
trons. In case of the Fermi gas, one might be inclined to as-
sume the shell correction to be purely kinematic. Otherwise
one would expect terms proportional to �hxP/mv2 and/or
(�hxP/mv2)2, where xP, the plasma frequency, is known to
replace I/�h in the Bethe formula [12]. One may object that
Eq. (7) only describes the high-speed behavior of L. How-
ever, the only material parameter determining the behavior
at low projectile speed, according to [11], is the Fermi speed
vF.

Based on this background, one of us [13] developed a ki-
netic theory of stopping that treats the shell correction as a
purely kinematical effect. The heart of this theory – which
is exact for free binary collisions – is a transformation of
the stopping number L0, evaluated in a reference frame
where the target electron is initially at rest, to the labora-
tory system where it moves with an orbital speed ve (a sim-
ilar transformation was also provided for straggling). An
expansion of the type of Eqs. (6) and (7) was derived in
general terms and tested on a number of cases such as
the Fermi gas and the quantal harmonic oscillator [14].

Extensive tests on the full transformation, going beyond
asymptotic expansion, were performed by Sabin and
Oddershede in [15] and numerous subsequent studies. A
weak point in those calculations is the question of how to
treat the velocity range where the Bethe logarithm becomes
negative. Here, the best available solution in 1982 was to
set L = 0 for 2mv2/I < 1.

A fundamental problem with this scheme is the fact that
the assumption of a bound electron at rest violates the
uncertainty principle, and that, consequently, a rigorous
evaluation of Eq. (2) is strictly impossible for an electron
at rest because of the lack of a valid description of the tar-
get atom in such a state. Although this problem is less
accentuated in case of the Fermi gas, were the assumption
of all electrons initially being at rest �only� violates the Pauli
principle and not the uncertainty principle, it would be
desirable to have a �legitimate� system for a direct evalua-
tion of whether the shell correction is purely kinematic
or, if not, for separating the kinematic contribution from
whatever else might be significant.

Here we make reference to the wellknown fact that the
function

LBloch ¼ LBethe þ DLBloch; ð8Þ

with DLBloch defined in Eq. (5), reduces to the Bohr
logarithm

LBohr ¼ ln
Cmv3

Z1e2x

� �
ð9Þ

at low projectile speed, where C = 1.1229 and x = I/�h. At
high projectile speed, DLBloch goes to zero, cf. Eq. (5).
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