
Numerical study of unsteady rarefied gas flow through an orifice

M.T. Ho*, I. Graur
Aix Marseille Universit�e, CNRS, IUSTI UMR 7343, 13453 Marseille, France

a r t i c l e i n f o

Article history:
Received 8 February 2014
Received in revised form
30 April 2014
Accepted 11 May 2014
Available online 23 May 2014

Keywords:
Rarefied gas
Kinetic equation
Orifice
Transient flow

a b s t r a c t

Transient flow of rarefied gas through an orifice caused by various pressure ratios between the reservoirs
is investigated for a wide range of the gas rarefaction, varying from the free molecular to continuum
regime. The problem is studied on the basis of the numerical solution of unsteady S-model kinetic
equation. It is found that the mass flow rate takes from 2.35 to 30.37 characteristic times, which is
defined by orifice radius over the most probable molecular speed, to reach its steady state value. The time
of steady flow establishment and the steady state distribution of the flow parameters are compared with
previously reported data obtained by the Direct Simulation Monte Carlo (DSMC) method. A simple fitting
expression is proposed for the approximation of the mass flow rate evolution in time.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The nonequilibrium flows of gases appear in different techno-
logical domains like the vacuum equipment, high altitude aero-
dynamics and in a relatively new field as the
microelectromechanical systems (MEMS). The deviation of a gas
from its local equilibrium state can be characterized by the Knud-
sen number, which present the ratio between the molecular mean
free path and the characteristic length of the problem. For the
relatively large values of the Knudsen number the classical con-
tinuum approach fails to describe the gas behavior and the kinetic
equations, like the Boltzmann equation or model kinetic equations,
must be solved to simulate the gas flows.

The gas flow through a thin orifice is a problem of a large
practical interest for the design of the vacuum equipment, space or
the microfluidic applications. The under-expanded jets through the
orifices are predominately used by particle analyzer systems to
separate and isolate molecules, ions of substances for analyzing
their physical and chemical properties. The time dependent char-
acteristics of these jets are important for the investigation of the
response time of the vacuum gauges developed for the measure-
ments of the rapid pressure changes [1].

The steady state flows through the orifice, slit and short tube
have been successfully studied applying the DSMC method and the
kinetic equations [2e9]. However, only a few results on the

transient rarefied flows through an orifice [10], a short tube [11], a
long tube [12] or a slit [13] may be found in open literature. The
flow conditions in [10] are limited to high and moderate Mach
number owing to significant statical noise of DSMC method at low
Mach number. The authors of [1] also studied experimentally and
numerically the transient gas flow, but between two tanks of the
fixed volumes. The rapid high amplitude pressure changings in
time are examined and their characteristic time was found to be of
the order of few seconds.

The aim of this work is to analyze the transient properties of gas
flow through an orifice induced by various values of the pressure
ratio over a broad range of gas rarefaction. The unsteady nonlinear
S-model kinetic equation is solved numerically by Discrete Velocity
Method (DVM) to obtain the mass flow rate and macroscopic pa-
rameters as a function of time. The time to reach the steady state
conditions for the mass flow rate is also estimated. An empirical
expression for evaluation of time-dependent mass flow rate is
proposed.

2. Problem formulation

Consider an orifice of radius R0 contained in an infinitesimally
thin wall, which isolates two infinite reservoirs. Both the upstream
and downstream reservoirs are filled with a monatomic gas but
maintained at different pressures p0 and p1, respectively, with
p0 > p1. The temperatures of thewall and of the gas in the reservoirs
are equal to T0. At time t ¼ 0, the orifice is opened instantly and the
gas starts to flow from the upstream reservoir to the downstream
one.
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Let us introduce a cylindrical coordinate system (r
0
,w,z

0
) with the

origin positioned at the center of the orifice and the Oz
0
axis

directed along the axis of the reservoirs (see the lateral section
shown in Fig.1). We assume that the flow is cylindrically symmetric
and does not depend on the angle w and therefore the problemmay
be considered as two dimensional in the physical space with the
position vector s

0 ¼ (r
0
,z

0
).

The gas-surface interaction has a very small impact on an orifice
flow [14]; consequently, this flow is governed by two principal
parameters: the pressure ratio p1/p0 and gas rarefaction d deter-
mined as

d ¼ R0p0
m0y0

; y0 ¼
ffiffiffiffiffiffiffiffiffiffi
2kT0
m

r
; (1)

where m0 is the viscosity coefficient at the temperature T0, y0 is the
most probable molecular speed at the same temperature; m is the
molecular mass of the gas; k is the Boltzmann constant. It is to
note that the gas rarefaction parameter is inversely proportional to
the Knudsen number; i.e., when d varies from 0 to ∞, the flow
regime changes from the free molecular to the hydrodynamic
regime.

It is convenient to define the characteristic time t0 of the flow as
follows

t0 ¼ R0
y0

: (2)

The unsteady S-model kinetic equation [15] is used to simulate
the transient rarefied gas flow through the orifice. The conservative
formulation of this equation [16,17] is implemented

v

vt0 ðr
0f 0Þ þ v

vr0
�
r0f 0ypcos4

�� v

v4

�
f 0ypsin4

�þ v

vz0
ðr0f 0yzÞ

¼ r0n0
�
f S

0 � f 0
�
; (3)

The main unknown is the molecular velocity distribution
function f

0
(t

0
,s

0
,y), y ¼ (ypcos4,ypsin4,yz) is the molecular velocity

vector representing the molecular velocity space. The polar co-
ordinates are introduced in a plane (yr,yw) and yp,4 are the
magnitude and orientation of the molecular velocity vector in this
(yr,yw) plane. The molecular collision frequency n

0
is supposed to be

independent on the molecular velocity and can be evaluated [15]
by

n0 ¼ p0

m0
: (4)

The equilibrium distribution function fS
0
[15] in eq. (3) is defined

in as

f S
0 ¼ fM

0
"
1þ 2mVq0

15n0ðkTÞ2
�
mV2

2kT 0
� 5
2

�#
;

fM
0 ¼ n0

� m
2pkT 0

�3=2
exp

�
�mV2

2kT 0

�
;

(5)

where fM
0
is the local Maxwellian distribution function, V¼ y� u

0
is

the peculiar velocity vector, u0 ¼ ðu0r;0;u0zÞ is the bulk velocity
vector, q0 ¼ ðq0r;0; q0zÞ is the heat flux vector, n

0
is the gas numerical

density.

It is useful to define the dimensionless variables as follows

t ¼ t0

t0
; s ¼ s0

R0
; c ¼ y

y0
;u ¼ u0

y0
;n ¼ n0

n0
;

T ¼ T 0

T0
; p ¼ p0

p0
;q ¼ q0

p0y0
;m ¼ m0

m0
; f ¼ f 0y30

n0
;

(6)

with the help of the state equation p0 ¼ n0kT0. In relations (6), the
dimensionless molecular velocity vector c is equal to
(cpcos4,cpsin4,cz).

In this study, the inverse power law potential is employed as the
molecular interaction potential; therefore, viscosity can be calcu-
lated by power law temperature dependence as

m ¼ Tu; (7)

where u is the viscosity index, which is equal to 0.5 for Hard Sphere
model and 1 for the Maxwell model [18].

Incorporating dimensionless quantities (6) into S-model kinetic
equation (3), the dimensionless conservative form of governing
equation is obtained

v

vt
ðrf Þ þ v

vr

�
rfcpcos4

�� v

v4

�
fcpsin4

�þ v

vz
ðrfczÞ

¼ rdnT1�u
�
f S � f

�
: (8)

The above equation is subjected to the following boundary
conditions. The distribution function of outgoing from the axis
molecules fþ is calculated from the distribution function of
incoming to the axis molecules f� taking into account the
axisymmetric condition as

fþr¼0

�
t; z; r;4; cp; cz

� ¼ f�r¼0
�
t; z; r;p� 4; cp; cz

�
; (9)

where the superscriptsþ and� refer to the outgoing and incoming
molecules, respectively. It is supposed that the computational
domain is large enough for obtaining the equilibrium far-field.
Hence, we assume that the molecules entering the computational

Fig. 1. Lateral section and computational domain of the flow configuration.

Table 1
Numerical grid parameters.

Phase space Reservoir Total number of points

Physical space z,r Left NO ¼ 40 Nzl � Nrl ¼ 96 � 96
Right Nzr � Nrr ¼ 101 � 101

Molecular velocity space 4,cp,cz Left & right N4 � Ncp � Ncz ¼ 40 � 16 � 16
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