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a b s t r a c t

Steady flows of rarefied single gases through long channels with double trapezoidal cross-section shapes
are investigated numerically. The flow is between two large reservoirs having the gas at different
pressures. The channels have constant cross-sections along the axial direction. The gas is modeled by the
linearized BhatnagareGrosseKrook kinetic equation. The diffuse reflection boundary condition is used at
the channel walls. The solution of the problem is divided into two stages. At a particular cross-section,
the flow is driven by the local pressure gradient. First, the local problem for an arbitrary driving term is
solved by using the discrete velocity method. This solution yields the dimensionless flow rate and the
velocity profile for a wide range of the gaseous rarefaction. Second, the global flow behavior, i.e. the flow
rate and the distribution of the pressure, is deduced for global pressure driven flows on the basis of the
conservation of mass. The numerical solution of the kinetic equation is based on the discretization of the
spatial and velocity spaces. The spatial space is represented on a rectangular grid. The walls of the
channels are aligned parallel to the grid lines or along the diagonal of the grid. Such a choice provides a
straightforward calculation of the spatial derivatives. In the interior part of the domain and near the
channel walls, second- and first-order finite difference forms are used, respectively. The velocity space is
represented by a GausseLegendre quadrature. The resulting discrete equations are solved in an iterative
manner. The dimensionless flow rates are calculated and tabulated for particular cross-sections in a wide
range of the gaseous rarefaction. The flow rate function exhibits the Knudsen minimum. The results are
compared to the corresponding ones with other cross-sections. Typical velocity profiles are also shown.
Finally, representative results are delivered for global pressure driven flows.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Flows of rarefied gases through long channels have great prac-
tical relevance. These flows can be found in nano- and micro-flu-
idics [1] or conventional vacuum science [2]. The gaseous
rarefaction is characterized by the ratio of the molecular mean free
path and the characteristic size of the channel. If the diameter of
the capillary is decreased, e.g. in the case of nano- and microflows,
or the pressure is reduced, the gas can not be considered contin-
uum and the details of the molecular motions need to be taken into
account. The proper description of gaseous flows under rarefied
condition should be based on the kinetic level [3]. Such description
requires the consideration of the velocity distribution function of
the molecules and the Boltzmann or other kinetic equation.

Significant effort has been made to solve kinetic equations for
flows in long channel. For such configurations, the flow problem

can be divided into two sub-problems. The kinetic equation is
typically solved in the two-dimensional cross-section sheet, while
the global flow behavior can be obtained on the basis of the con-
servation of the mass along the axis of the channel. The discrete
velocity method has been used to solve the two-dimensional ki-
netic problem for flows in long capillaries with circular [4,5],
rectangular [6], elliptical [7], annular [8], triangular [9,10] or trap-
ezoidal cross-sections [11]. The probabilistic variance-reduced
DSMC has also been used to solve some two-dimensional flow
configurations [12,13]. If the cross-section has a non-trivial shape,
e.g. triangular or trapezoidal, more care is needed to adopt the
discrete velocity method. A special spatial grid needs to be used to
capture the non-trivial boundary. For triangular and trapezoidal
cross-sections, the triangular grid is a sufficient choice. However,
the numerical solution of kinetic equations on special grids is still a
challenge. Other types of numerical methods, i.e. Ref. [14e16],
might also be used to solve kinetic problems. But, these approaches
are more complicated and require larger computational effort than
the aforementioned ones. For the purpose of the present flow
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configuration, the most suitable choice is to further develop the
methods of Refs. [4e11].

In this paper, as a new application, isothermal pressure driven
rarefied gaseous flows through long channels with double trape-
zoidal cross-sections is considered. This flow configuration can be
found in microfluidic applications. Special microchannels with this
cross-section are manufactured [17,18]. However, numerical results
of the flow behaviors in the whole range of the gaseous rarefaction
for such channels are not available in the current literature. The gas
is modeled by the BhatnagareGrosseKrook (BGK) linearized ki-
netic equation, which is solved by the discrete velocity method. A
boundary fitted rectangular grid is used to represent the spatial
space. The dimensionless flow rates are calculated and tabulated
for various channels and at a wide range of the gaseous rarefaction.
Typical velocity profiles are shown. Global pressure driven flows
are also considered. The global flow rate and representative pres-
sure profiles are presented for various flow configurations.

2. Statement of the problem

Flows of rarefied gases in long channels with double trapezoidal
cross-section shapes are considered. The axis of the channel is
along the z0 coordinate direction, and its cross-section is in the (x0,
y0) plane. The length of the channel is denoted by L. The layout of
the cross-section is shown in Fig. 1. The total width of the channel is
W ¼ 2(a1 þ a2), and its total height is H¼ 2b. The aspect ratio of the
channel is defined by H/W, and it is always �1. The gas is charac-
terized by the local rarefaction parameter

d ¼ PH
mv0

; (1)

where P is the pressure, m is the viscosity and v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=m

p
is the

characteristic speed of the molecules. Here, kB is the Boltzmann
constant, T is the temperature and m is the molecular mass.

The inlet and outlet pressures are denoted by P1 and P2. It is
assumed that P1 > P2; hence, the gas flows from the inlet towards
the outlet. One of the main interests of this work is in the mass flow
rate defined by

_M :¼
Z
A0

ru0zdA
0; (2)

where A0 denotes the cross-section, r is the mass density, u0z is the
axial gaseous velocity.

It is assumed that the channel is sufficiently long, i.e. the length
of the channel is much larger than both width and height, W ≪ L
and H≪ L. Under this condition, the flow field depends on the axial
coordinate only, the end effects of the channel can be neglected and
the local driving force, the dimensionless pressure gradient, is
significantly smaller than unity, XP ¼ (dP/dz0)H/P ≪ 1. The gaseous
velocity is also negligible compared to the characteristic molecular
speed, u0z≪v0. This means that the gas is slightly perturbed around
equilibrium and a linearized description can be used.

The linearization implies that the local mass flow rate is a linear
functions of the local pressure gradient

_M ¼ �rv0A0

2
GXP ; (3)

where G is the dimensionless flow rate. This latter quantity has a
cardinal importance to determine the dimensional flow rate. G
depends only on the local rarefaction of the gas.

The primary scope of the paper is to determine the local velocity
profile and G for various values of the rarefaction parameter. Sec-
ondly, the global pressure driven flow through the channel is
analyzed.

3. Linearized BGK kinetic equation

The problem is modeled at the kinetic level, which is valid in the
whole range of the gaseous rarefaction. The flow is described by the
linearized version of the BhatnagareGrosseKrook kinetic equation.
The BGK equation applies a relaxation time approximation for the
collision operator. This treatment can provide physically accurate
results for isothermal rarefied gas flows; hence, it is suitable in the
present case. The linearized BGK equation has been validated
against the experimental measurement of the mass flow rate for
pressure driven flows [11]. The comparison has yielded good
agreement between theory and experiment. The original BGK
equation and the derivation of its linearized version are well
documented in the literature and can be found in Ref. [19] for
example. Interested reader may consult with that work. Here, the
formulation of the linearized equation is presented. Since the
channel is long, the applicability of the linearized BGK equation is
justified as it has been mentioned in Section 2. If the assumption of
the long channel is hold, the linearization does not introduce error
in the modeling. However, if the channel length is finite, the ratio
u0z=v0 is higher than in the present case and the full non-linear ki-
netic equation needs to be solved. It would be interesting to analyze
the applicability of the linearized description in terms of the ratios
W/L and H/L. However, this analysis is beyond the scope of the
present work since it requires a different numerical approach.Fig. 1. The hexagonal cross-section (top) and the layout of the spatial grid (bottom).
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