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a b s t r a c t

Sound waves propagating through a rarefied gas confined between two coaxial cylinders and induced by
an unsteady heating of the inner boundary is modelled on the basis of a kinetic model to the linearized
and non-stationary Boltzmann equation. The gas flow is considered as fully established so that the
dependence of all quantities on time is harmonical. The diffuse scattering of gaseous particles is assumed
as the boundary conditions on both cylinders. The solution of the problem depends on three parameters:
the Knudsen number, the temperature oscillation frequency and the radius ratio. The deviation of gas
properties from their equilibrium values, namely, density, temperature and pressure deviations, and also
the bulk velocity and heat flux in the direction of sound propagation are calculated in a wide range of
Knudsen number and oscillation frequency in order to cover all the regimes of gas flow, i.e. free mo-
lecular, transitional and hydrodynamic regimes. Two values of radius ratio of cylinders are considered to
evaluate the curvature effects on the solution of the problem.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In gaseous systems, an unsteady heating of solid boundary in-
duces sound waves which propagate through the gas and affect its
equilibrium properties such as pressure, temperature, etc. These
thermally induced waves are usually referred as thermoacoustic
waves and its effects are used in many technologies such as heat
pumps, refrigerators and mixture separators [1]. Currently, the
study of thermoacoustic effects at low pressure is motivated by its
application in vacuum and MEMS technologies. For instance, Pirani
gauges are widely used for measurements andmonitoring pressure
in vacuum apparatus. In this kind of device, a heated filament is
cooled by the gas surrounding it. Thus, by passing an electrical
current through the filament and measuring its temperature, the
pressure of the gas can be determined. In spite of its simplicity,
advances in microtechnology have demanded the modelling of the
dynamical behavior of the gas surrounding the heated filament
properly in order to improve the performance of the device. Usu-
ally, a modelling of the gas flow in a Pirani gauge is done by

considering the steady problem of heat transfer through a rarefied
gas confined between coaxial cylinders maintained at different
temperatures, see e.g. Refs. [2e8]. However, in practice the tem-
perature of the filament can oscillate with time changing the
behavior of the gas in its surround. These effects are not negligible
in microscale and can influence the gas pressure significantly.

The aim of the present work is to model the sound propagation
through a rarefied gas confined between two coaxial cylinders due
to an unsteady heating of the inner cylinder which affects the
equilibrium properties of the gas. The propagation of such ther-
moacoustic waves induces a gas flow in the gap between the cyl-
inders which is characterized by a heat flux and bulk velocity in the
direction of sound propagation, and also by deviations of pressure,
temperature and density. These macrocharacteristics of the gas
flow are calculated for a broad range of gas rarefaction and sound
frequency so that the free molecular, transitional and hydrody-
namic regimes are covered. A similar problem was already treated
in our previous work [9] by considering a gas confined between
parallel plates. However, curvature effects play an important role
when dealingwith gas flows in cylindrical configuration. In order to
take into account these curvature effects, another parameter is
introduced, namely, the ratio of cylinders radii. The kinetic model
proposed by Shakhov [10] to the linearized and non-stationary
Boltzmann equation is employed and a discrete velocity method
is used to solve it numerically. This kinetic model was already
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successfully employed in our previous works [9,11e14] concerning
non-stationary processes in rarefied gases.

In the hydrodynamic regime, the classical equations of fluid
dynamics with appropriate temperature jump boundary conditions
are solved and the results are compared to those obtained via ki-
netic equation so that the range of validity of the classical approach
for the problem in question is verified.

2. Statement of the problem

It is considered amonoatomic gas confined between two coaxial
and fixed cylinders with radii R0 and R1 (R1 > R0). The axis of both
cylinders coincide with the z-axis of the Cartesian coordinates. The
cylinders are considered too long and, as a consequence, the end
effects can be neglected. The temperature of the outer cylinder is
constant and equal to the gas equilibrium temperature T0, while the
temperature of the inner cylinder is not constant but it varies on
time harmonically as

TwðtÞ ¼ T0 þ DTm<
�
e�iut

�
; DTm � T0; (1)

where DTm is the maximum deviation of the temperature from the
equilibrium value T0. < means the real part of the complex
expression, i is the imaginary unit, t is the time and u is the tem-
perature oscillation frequency.

The temperature oscillation of the inner cylinder causes the
thermo-acoustic waves which propagate through the gas in the
radial direction r0 and disturb the equilibrium properties of the gas,
namely, density n0 and temperature T0. Therefore, the disturbed gas
is characterized by a density n(r

0
,t) and temperature T(r

0
,t). More-

over, the bulk velocity U(r
0
,t) and heat flux Q(r

0
,t) in the radial di-

rection also appear. We are interested in a pressure tensor denoted
by P in which the diagonal term Prr allows us to determine the
deviation of the gas pressure from its equilibrium value p0, i.e.
Prr � p0, in the direction of waves propagation. In fact, the pressure
deviation is the quantity really measured in experiments dealing
with propagation of sound waves. However, the heat flux can also
be detected experimentally.

The outer cylinder is considered a receptor of sound waves. Its
presence can significantly affect the behavior of the gas flow in the
gap between the cylinders due to the interference phenomenon
between the reflected waves from source and receptor. As a
consequence, such an influence must be considered in order to
describe the gas flow properly.

The regime of the gas flow induced by the waves propagation is
determined by two independent parameters, namely, the rarefac-
tion parameter d and oscillation parameter q. These parameters are
defined, respectively, as

d ¼ R1 � R0
[

; [ ¼ mv0
p0

; v0 ¼
�
2kT0
m

�1=2

; (2)

and

q ¼ n

u
; n ¼ p0

m
; (3)

where m denotes the viscosity of the gas at equilibrium tempera-
ture, m is the molecular mass of the gas and k is the Boltzmann
constant. Since the quantity [ is the equivalent mean free path of
gaseous molecules, the rarefaction parameter is inversely propor-
tional to the Knudsen number. The quantity n has the order of the
intermolecular collision frequency so that the oscillation parameter
is the ratio of collision frequency to oscillation frequency. These
parameters are independent of each other because one can either

change the parameter d and maintain q by varying the distance
between the cylinders or change the parameter q andmaintain d by
varying the oscillation frequency u.

Furthermore, since the solution of the problem depends on
curvature effects, the parameter a ¼ R1/R0, corresponding to the
ratio between the outer radius and the inner radius of cylinders, is
introduced. In the limit a/ 1, the solution of the problem tends to
that obtained in Ref. [9] for planar geometry.

The dimensionless radial coordinate is introduced as

r ¼ u

v0
r0; (4)

where the quantity v0/u corresponds to the average distance
traveled by gaseous particles during one cycle of the oscillation. As
a consequence, the dimensionless radii are written in terms of both
rarefaction and oscillation parameters as follows

r0 ¼ d

q

1
ða� 1Þ; r1 ¼ d

q

a
ða� 1Þ; a ¼ R1

R0
: (5)

Note that the dimensionless distance between the cylinders is
given as L ¼ d/q.

The gas flow induced by the oscillatory heating of the inner
cylinder is considered as fully established. Consequently, all the
quantities describing the gas behavior, i.e. density, temperature,
pressure, bulk velocity and heat flux, depends on time harmoni-
cally. In order to calculate these quantities, dimensionless complex
functions are introduced as

<
h
9ðrÞe�iut

i
¼ nðr; tÞ � n0

n0

T0
DTm

; (6)

<
h
sðrÞe�iut

i
¼ Tðr; tÞ � T0

DTm
; (7)

<
h
PðrÞe�iut

i
¼ Prrðr; tÞ � p0

p0

T0
DTm

; (8)

<
h
uðrÞe�iut

i
¼ Uðr; tÞ

v0

T0
DTm

; (9)

<
h
qðrÞe�iut

i
¼ Qðr; tÞ

p0v0

T0
DTm

: (10)

Note that the real part of the complex functions û, s, P, u and q
represents the deviation of the quantity under consideration from
its value in the equilibrium state. Moreover, these complex func-
tions can be represented as

aðrÞ ¼ amðrÞexp½i4aðrÞ�; a ¼ 9; s;P;u; q; (11)

where am(r) and fa(r) are real functions corresponding to the
amplitude and phase of the complex quantity. Therefore, the
calculation of the amplitudes and phases allows us to determine
the quantities of physical interest to describe the gas flow under
consideration.

3. Kinetic equation

Similarly to our previous works [13,14], the problem is solved on
the basis of the kinetic model proposed by Shakhov [10] in its
linearized and non-stationary form. As was mentioned in
Refs. [13,14], this model is the most appropriate to deal with
problems concerning a sound propagation because it provides the
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