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a b s t r a c t

The operator-splitting schemes for integration of stiff diffusion–reaction systems were found to fail in
error control, i.e. incurring O(1) relative errors, with splitting time steps larger than that required for fully
explicit integration, when significant non-chemical radical sources are present. It was shown that, by
excluding the transport term from the chemistry integration, errors by orders of magnitude may occur
in radical concentrations solved in the chemistry sub-step, resulting in significant errors in the major spe-
cies. The failing scenario is demonstrated with a toy problem and an unsteady perfectly-stirred reactor
(PSR) for hydrogen/air with significant H radical concentration at inlet. A dynamic adaptive method for
hybrid integration (AHI) of stiff chemistry is then proposed as a substitute for the operator-splitting
schemes in such cases. The AHI method can obtain accurate solutions by integrating the fast species
and reactions implicitly and the non-stiff terms, including slow reactions and non-chemical source terms,
explicitly. Specifically, fast species and reactions are identified on-the-fly based on their analytically
derived timescales, the rates of slow variables are evaluated explicitly and those of fast species are eval-
uated partial-implicitly. As such, the number of variables to be implicitly solved at each integration time
step is reduced to the number of the fast species, resulting in a smaller Jacobian matrix and consequently
lower computational cost compared with the fully implicit solvers. The hybrid method is validated in
auto-ignition for hydrogen/air with different equivalence ratios and initial temperatures, and compared
with the Strang splitting scheme for the toy problem and the unsteady PSR. Results show significant
improvement in accuracy using the AHI method.

� 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

Detailed chemistry is important for high-fidelity reacting flow
simulations. Major challenges to incorporate detailed chemistry
in large-scale simulations are primarily attributed to the large sizes
and severe stiffness of detailed chemistry. While detailed mecha-
nisms can be reduced in size through skeletal reduction and
timescale analyses [1], chemical stiffness renders the low-cost
explicit integration solvers inapplicable for many flow simulations,
particularly when relatively large time steps are adopted, and com-
putationally expensive implicit solvers are typically required to
integrate combustion problems. Chemical stiffness is induced by
the extremely short timescales associated with highly reactive rad-
icals and fast reactions. In direct numerical simulations (DNS) of
compressible reacting flows, the time steps are typically limited
by the fine spatial resolution and the Courant–Friedrichs–Lewy
(CFL) condition, such that the typical step sizes for time-integration

are smaller than, say, 10 ns [2], and in such cases chemical stiffness
can be removed on-the-fly without significant overhead due to the
sparse coupling of the fast chemical processes [3]. However, stiff-
ness removal for simulations with significantly larger integration
time steps remains a challenge due to the densely-coupled fast
chemical processes, particularly the fast reactions that are in partial
equilibria. While such timescale analyses as computational singular
perturbation (CSP) [4,5] and intrinsic low dimensional manifold
(ILDM) [6] can be employed to systematically eliminate the short
timescales of fast modes, significant computational overhead is
involved with the methods based on Eigen-analysis such that the
overall computational time is comparable to or even higher than
that using the implicit solvers, e.g. VODE [7] and DASAC [8],which
are widely adopted in practical reacting flow simulations.

The computational overhead of implicit solvers is primarily
attributed to the Jacobian evaluation and LU decomposition. As
such, the computational cost is typically O(n2), where n is the num-
ber of species, for small to moderately large mechanisms where the
Jacobian evaluation is through numerical perturbations and domi-
nates the computational cost, and O(n3) for large mechanisms

http://dx.doi.org/10.1016/j.combustflame.2014.07.023
0010-2180/� 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail address: tlu@engr.uconn.edu (T. Lu).

Combustion and Flame 162 (2015) 287–295

Contents lists available at ScienceDirect

Combustion and Flame

journal homepage: www.elsevier .com/locate /combustflame

http://crossmark.crossref.org/dialog/?doi=10.1016/j.combustflame.2014.07.023&domain=pdf
http://dx.doi.org/10.1016/j.combustflame.2014.07.023
mailto:tlu@engr.uconn.edu
http://dx.doi.org/10.1016/j.combustflame.2014.07.023
http://www.sciencedirect.com/science/journal/00102180
http://www.elsevier.com/locate/combustflame


where the LU decomposition is the most time consuming opera-
tion. Evaluation of the Jacobian matrix can typically be expedited
through analytic techniques [1], and the high computational cost
associated with LU decomposition can be reduced by precondition-
ing [9] and sparse matrix techniques [10–13], and linear scaling
with large mechanisms for spatially homogenous reactor calcula-
tions was observed.

For simulations of multi-dimensional flows, fully implicit
integration schemes typically induce high computational costs
due to the large number of spatial grid points involved. Implicit–
Explicit (IMEX) approaches combine implicit and explicit discreti-
zations for different source terms for reduced computational cost
[14–18]. Operator-splitting schemes [19–26] are frequently used
to integrate stiff chemistry and non-chemical processes in separate
sub-steps, such that the expensive implicit solvers are only invoked
for the integration of local chemistry, while the low cost explicit
solvers can be employed to integrate the non-chemical source
terms. In particular, the Strang splitting scheme [26] is among the
most widely used operator splitting schemes for practical combus-
tion simulations. It features second-order accuracy for sufficiently
small splitting time steps and is rather straightforward to imple-
ment. While error control of the splitting schemes has been well
studied at the limit of small splitting time steps, the splitting time
steps adopted in most practical simulations are typically moder-
ately large to avoid excessively high computational cost, and such
cases with moderately large splitting time steps are referred to as
coarse cases [22]. Splitting errors induced by stiff chemistry in
coarse cases can be rather large [27], although successes have been
reported in many studies, e.g. [21,25,28]. The mechanisms for the
large splitting errors in coarse cases can be complex and are not
fully understood.

In the present study, a mechanism associated with stiff chemis-
try that can result in failed error control of operator-splitting
schemes in coarse cases is identified. The reason of the failure is
attributed to the significant modification of the slow chemistry’s
trajectory by operator splitting, i.e. by excluding the transport
source term from the sub-step for chemistry integration. A
dynamic adaptive method for hybrid integration (AHI) is then pro-
posed as a substitute of the operator-splitting schemes to integrate
combustion systems involving stiff chemistry with improved
accuracy.

As the outline of this paper, the large splitting errors of the
Strang splitting scheme in coarse cases are first demonstrated
and investigated using a toy problem. An AHI method is then pro-
posed to resolve this issue and to achieve accurate and efficient
time-integration of stiff chemistry coupled with transport. The
AHI method is tested in auto-ignition and the solutions are com-
pared with that from SENKIN [29], which utilizes the fully implicit
DASAC solver based on the backward difference formula (BDF). The
results of AHI are then compared with that of the Strang splitting
scheme for the toy problem and an unsteady perfectly stirred reac-
tor (PSR) of hydrogen/air using detailed chemistry.

2. The Strang splitting scheme and a toy problem

The Strang splitting scheme is among the most widely used
solvers for reacting flows involving stiff chemistry, for which the
spatially discretized governing equations can be expressed as:

dU
dt
¼M Uð Þ þ S Uð Þ ð1Þ

where U is the vector of the thermo-chemical composition, includ-
ing, e.g. temperature and species mass fractions. The operators M
and S are for the transport and chemistry terms, respectively. To
solve Eq. (1) using the second-order Strang splitting scheme

[25,26], the time domain [t0, tf] is discretized into nt uniform inter-
vals of size Dt, which are referred to as the splitting time steps. In
each splitting time step, time-integration can be performed in the
following sequence, namely the S/2 �M � S/2 scheme:

dUð1Þ

dt
¼ S Uð1Þ

� �
; Uð1Þð0Þ ¼ Un on ½0;Dt=2� ð2aÞ

dUð2Þ

dt
¼M Uð2Þ

� �
; Uð2Þð0Þ ¼ Uð1ÞðDt=2Þ on ½0;Dt� ð2bÞ

dUð3Þ

dt
¼ S Uð3Þ

� �
; Uð3Þð0Þ ¼ Uð2ÞðDtÞ on ½0;Dt=2� ð2cÞ

where Un is the composition at the beginning of the nth splitting
time step. The initial conditions of Eqs. (2b) and (2c) are the
solutions of Eqs. (2a) and (2b), respectively, and U(3)(Dt/2) is the
solution at the end of the splitting time step. Eq. (2b) can typically
be explicitly integrated in one step if the splitting time step is suf-
ficiently small to resolve the transport term, while Eqs. (2a) and (2c)
typically require multiple implicit steps using stiff ODE solvers.
Note that one can build a M/2 � S �M/2 scheme in a similar man-
ner, which is nevertheless less accurate than the S/2 �M � S/2
scheme as discussed in [22]. The S/2 �M � S/2 scheme will be used
to study the splitting errors in the following.

A toy model is first constructed to investigate the possible sce-
narios where the operator splitting schemes may fail in coarse
cases. The model involves the following three reactions.

A!k1 R ðR1Þ

R!k2 C ðR2Þ

Aþ aR!k3 Bþ aR ðR3Þ

where k1, k2 and k3 are the reaction rate coefficients of reactions R1,
R2, R3, respectively. Species A is the reactant, B is the product, C is an
intermediate species that is not of direct importance to A and B, and
R is a radical that controls the important reaction (R3) for product
formation. The parameter a determines the overall reaction order
and nonlinearity of (R3).

For simplicity, the transport term of species R is set to be a
constant, d, and those for the other species are set to be zero.
The term d mimics the effect of a mixture, e.g. in the preheat zone
of a premixed flame, receiving substantial amount of radicals from
a neighboring fluid element, e.g. in the reaction zone. Note that
including nontrivial transport terms for the major species does
not affect the nature of the toy problem.

The dependent variables and source terms in Eq. (1) for the toy
problem can thereby be expressed as:

U ¼ ½A;B;C;R�T ;

S ¼ ½�k1A� k3ARa
; k3ARa

; k2R; k1A� k2R�T ;
M ¼ ½0;0;0;d�T ;

ð3Þ

with the initial condition being

A ¼ 1;B ¼ C ¼ R ¼ 0; at t ¼ 0

k2 is chosen to be much larger than k1, i.e. k2� k1, such that R stays
in quasi steady state (QSS) after an initial transient period and can
be approximated as

R � k1Aþ d
k2

ð4Þ

and the timescale of R can be defined as s = 1/k2. It is seen that the
concentration of R is sensitive to transport unless |d|� k1A.
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