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a b s t r a c t

The pressure effects on thermodynamic properties as well as the structural phase transition of the rare-
earth metal cerium have been investigated by using the statistical moment method in quantum statis-
tical mechanics. The analytical expressions of Helmholtz free energy, thermal expansion coefficient, and
bulk modulus of a-Ce have been derived. Numerical calculations of these above thermodynamic quan-
tities give good and reasonable results comparing to experiments as well as other theoretical works. This
research also proposes the efficiency of the statistical moment method for determining the relative
change of the phase transition temperature of the process g-Ce / d-Ce under pressure.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Cerium is a rare-earth metal with most unusual properties and
complicated structural phase diagram [1,2]. As the first rare earth
metal with one 4f-electron, cerium exhibits at least 5 recorded
allotropic forms of cerium: a-Ce (face-centered cubic e fcc), b-Ce
(hexagonal closed pack e dhcp), g-Ce (fcc), 2-Ce (Body-centered
tetragonal e bct) and d-Ce (body-centered cubic e bcc). In partic-
ular, this metal is best known for its isostructural solidesolid phase
transition between the two a and g phases with a volume (V)
collapse of about 15% [3e6]. Apart from this isostructural phase
transition, however, to our best knowledge, only a few works have
been done to investigate the g / d phase transition of cerium.

Besides a direct study of the electronic properties, numerous
efforts have been devoted to deeply understand the lattice dy-
namics of the d phase of cerium. Using inelastic neutron scattering,
growing the single crystals in situ on the spectrometer, Nicolaus
et al. [7] measured the phonon dispersion of high-temperature d-
Ce. By performing lattice dynamical calculations in the angular
force model, Delig€oz et al. [8] computed dispersion curves, fre-
quency spectra, lattice specific heat and Debye temperature of bcc
cerium. For the g phase, the phonon dispersion has been studied by

Stassis et al. [9,10], as well as the elastic constants by Greiner et al.
[11]. Recently, Huang and Chen [12] and Sun et al. [13] investigated
the lattice dynamics of the a and g phases of cerium via the first-
principles plane wave method. However, according to the litera-
ture, the values of thermodynamic quantities of a-Ce are still
currently under debate, with very different conclusions reached by
different authors.

In this paper, with the aim of contributing to the knowledge
about thermodynamic properties of the a phase of cerium, using
the statistical moment method (SMM) in quantum statistical me-
chanics [14e16], we derive the Helmholtz free energy, then the
bulk modulus and linear thermal expansion coefficient of a crys-
talline system in analytical forms. Furthermore, based on thermo-
dynamic considerations, we determine the phase transition
temperature of the process g / d of cerium as a function of
pressure.

2. Theory

2.1. Summary of statistical moment method

In the first part of this section, we summarize the main results of
SMM which has been derived for crystalline materials [14,16]. At
finite temperature, the thermal lattice vibration plays an important
role in determining the thermodynamic properties of materials. Let
us firstly consider the system with Hamiltonian as
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bH ¼ bH0 � abV ; (1)

where bH0 is the lattice Hamiltonian in the harmonic approximation
and the second term is due to the anharmonicity of thermal lattice
vibrations. As reported by Tang&Hung [14] andMasuda-Jindo et al.
[16], the Helmholtz free energy at temperature T of the above
quantum system is given by

j ¼ j0 �
Za
0

〈bV 〉ada ; 〈bV 〉a ¼ �vj=va; (2)

in which j0 is the free energy of the system corresponding to the
Hamiltonian bH0, 〈…〉a expresses the expectation values at thermal
equilibrium with the anharmonic Hamiltonian bH . If the Hamilto-
nian bH has a complex form, we divide it into twomore simple parts,

bH ¼ bH0 �
X
i

ai
bVi ; (3)

At first we find the free energy j1 of the system corresponding
to the Hamiltonian cH1 ¼ bH0 � a1

cV1 . Afterwards we find the free
energy j2 of the system corresponding to cH2 ¼ cH1 � a2

cV2 , and so
on. In this waywe can find the expression of the free energy j of the
system with Hamiltonian bH . The thermodynamic quantities of the
harmonic crystal (harmonic Hamiltonian) will be treated in the
Einstein approximation.

In order to derive the Helmholtz free energy of the crystalline
material, we assume that the potential energy of the system
composed of N atoms can be written as

U ¼ N
2

X
i

4i0ðjri þ uijÞ (4)

where ri is the equilibrium position of the i-th atom, ui its
displacement, and 4i0 the effective interaction energy between
zero-th and i-th atoms. We expand the potential energy
4i0ðjri þ uijÞ in terms of the displacement up to the fourth-order
terms and evaluate the vibrational coupling parameters.

U ¼
X
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Using Eq. (5), the thermal average of potential energy of the
system is given in terms of the power moment

a ¼ kBcT
3

�
vP
vq

�
V
¼ �

ffiffiffi
2

p
kBcT
3r21

1
3N

v2j
vqvr: of the thermal atomic displace-

ments and harmonic parameter k, and anharmonic expansion co-
efficients g1 and g2 as [15].

〈U〉 ¼ U0 þ 3N
�
k
2
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�
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where

k ¼ 1
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with asb ¼ x; y or z. In the above equation (6), eq indicates the
thermal averaging over the equilibrium ensemble.

In order to derive the expression of the Helmholtz free energy,
we need to evaluate analytically the following integrals

I1 ¼
Zg1

0

〈u4i 〉dg1 ; I2 ¼
Zg2

0

〈u2i 〉
2
g1¼0dg2 (9)

Then the final Helmholtz free energy of the systemwithN atoms
is given by [15]

j ¼ U0 þ j0 þ
3Nq2

k2
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where x ¼ Zu=2q, X ¼ xcoth x, q ¼ kBT (kB is the Boltzmann con-
stant), and u is the atomic vibration frequency which can be
approximated in most cases (especially for obtaining the thermo-
dynamic quantities at high temperatures) by the Einstein frequency
uE ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
; U0 ¼P

i
4i0ðriÞ denotes the total pair interaction en-

ergy 4ðr0iÞ on the 0th atom, j0 ¼ 3Nq½xþ lnð1� e�2xÞ� is the
anharmonicity contribution to the free energy.

The Helmholtz free energy j is going to be used to calculate the
various thermodynamic quantities (such as the thermal expansion
coefficient, and bulk modulus which are closely related to the
anharmonicity of thermal lattice vibrations) as well as to investi-
gate the fcc / bcc phase transition of the cerium element.

Let us now consider the isothermal compressibility of the solid
phase with fcc structure. According to the definition of the
isothermal compressibility cT , it is given in terms of the volume V
and pressure P as

cT ¼ � 1
V0

�
vV
vP

�
T
¼ 1

BT
; (11)

where BT is the isothermal bulk modulus and the pressure P can be
determined from the free energy j of the crystal by

P ¼ �
�
vj

vV

�
¼ � r1

3V

�
vj

vr

�
: (12)

The final expression of isothermal compressibility is given by

cT ¼ � 3ðr1=rÞ

2P þ
ffiffiffi
2

p
r1

1
3N

 
v2j
vr2

!; (13)

where r1ðTÞ is the nearest-neighbor distance (NND) between two
intermediate atoms at temperature T which can be determined as

r1ðTÞ ¼ r0 þ y0ðTÞ; (14)

here, r0 is the value of NND r1ðTÞ at zero temperature. This value
can be evaluated from experiment or from the minimum condition
of the potential energy of the crystal, the average atomic
displacement y0ðTÞ which takes into account the anharmonicity
effects of thermal lattice vibrations at temperature T as [15,14]
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