Vacuum 107 (2014) 259-263

Contents lists available at ScienceDirect

Vacuum

journal homepage: www.elsevier.com/locate/vacuum

Alumina particle reinforced TiO₂ composite films grown by direct liquid injection MOCVD

CrossMark

VACUUM

L. Avril*, J. Boudon, M.C. Marco de Lucas, L. Imhoff

Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université de Bourgogne, 9 Av. A. Savary, BP 47 870, 21078 Dijon Cedex, France

ARTICLE INFO

Article history: Received 1 October 2013 Received in revised form 20 February 2014 Accepted 24 February 2014

Keywords: α-Al₂O₃-TiO₂ composite films Liquid injection MOCVD single-step deposition Colloidal suspension

1. Introduction

Mechanical properties of materials are strongly dependent on their microstructure and they can be improved by adding a reinforcing phase to the matrix. It has been shown that the addition of a TiN, TiC or inorganic fullerene phase to ceramic matrix increases hardness, fracture toughness and thermal resistance [1–4].

Chemical and thermal stability, relatively good strength, thermal and electrical insulating characteristics have made aluminum oxide attractive for many engineering applications. Al₂O₃ nanopowders are usually added into ceramic-metallic materials to improve the toughness [5,6]. The quality of ceramic composite is controlled by the dispersion state of reinforcements in ceramic matrix. The colloidal dispersion of Al₂O₃ powders has been successfully applied in the field of structural ceramics [7,8]. For example, Laarz et al. [9] obtained homogeneous and agglomeratefree microstructures of Al₂O₃—TiC composites sintered by hot pressing technique. Colloidal solutions were prepared by adding dispersant and controlling pH.

Several deposition techniques have been used for elaborating composites containing alumina such as hot pressing sintering process [10], the liquid metallurgy [11] or the infiltration techniques [12]. Other works have investigated the synthesis of noble metal nanoparticles (NPs) on different substrates by atomic layer deposition [13–15], thermal evaporation [16,17] or magnetron

ABSTRACT

The use of a liquid injection delivery system to form composite films containing nanoparticles was investigated. Al_2O_3 -TiO₂ films were grown on silicon substrates by direct liquid injection MOCVD (DLI-MOCVD) at 400 °C. The α -Al₂O₃ nanoparticles (α -Al₂O₃NPs) dispersed in TiO₂ films resulted from co-deposition using colloidal α -Al₂O₃ solution and titanium tetraisopropoxide as titanium precursor. Scanning electron microscopy coupled with EDS as well as Raman spectroscopy confirmed the presence of α -Al₂O₃NPs aggregates embedded in the TiO₂ matrix. The liquid injection system coupled with CVD technique can be promising to form composite films containing preformed nanoparticles.

© 2014 Elsevier Ltd. All rights reserved.

sputtering [18,19]. Also, Parkin et al. [20] synthesized gold nanoparticle nanocomposite films by aerosol assisted chemical vapor deposition (CVD), using preformed nanoparticles. Recently, it has been reported the elaboration of nanostructured composite coatings, incorporating metal NPs by using liquid injection CVD from several precursors to obtain nanostructured composite coatings, incorporating metal NPs [21–23]. However, the use of a liquid injection using a preformed NPs colloidal suspension has not yet been reported for the insertion of NPs during the CVD growth of a matrix layer.

In this work, we explored the potential of a liquid injection delivery system on the feasibility of the dispersion of micro-scaled Al_2O_3 particles in a TiO₂ matrix. The main purpose was to develop an optimized process of the liquid injection system for Al_2O_3 -TiO₂ composite films which yields dense and compact layers with homogeneous microstructure.

2. Experimental details

2.1. DLI-MOCVD deposition

Titanium tetraisopropoxide (TTIP, Ti((OCH(CH₃)₂)₄, Strem, 99.99%) was used as a precursor for TiO₂ thin film deposition by direct liquid injection MOCVD (DLI-MOCVD) and dissolved in anhydrous cyclohexane (C₆H₁₂, 99.99%, Sigma Aldrich) with a concentration of 1 M. Cyclohexane was chosen as solvent because it meets the requirements for the DLI-MOCVD process [24]. α -Al₂O₃ commercial nanopowder with an average particle size of 40 nm (PlasmaChem, 99.80%) was dispersed in isopropyl alcohol with a

^{*} Corresponding author. Tel.: +33 3 80 39 63 32; fax: +33 3 80 39 38 19. E-mail addresses: ludovic.avril@u-bourgogne.fr, ludo.avril@laposte.net (L. Avril).

Fig. 1. Schematic layout of the direct liquid injection MOCVD system.

concentration of 10^{-3} M and pH of 8–9 [25]. Then the colloidal suspension was ultra-sonicated during 15 min.

The Si(100) substrates were ultrasonically cleaned in octane and in acetone. Then they were rinsed in ethanol and dried under N_2 gas flow. They were laid on a silicon carbide coated graphite susceptor supported by a quartz holder in the reaction chamber.

Al₂O₃-TiO₂ composite films were grown on Si(100) substrates by DLI-MOCVD process (Fig. 1) by using a MC-050 Annealsys CVD set-up which is equipped with a liquid injection head (Kemstream) which allows introducing a precursor aerosol, a NPs injector of the precursor, thermal vaporizer chamber and a quartz reaction chamber which is surrounded by halogen infrared lamps for heating monitored by a K-type thermocouple and proportionalintegral-derivative (PID) controller. The liquid injection head is used for the introduction of a precursor aerosol while the NPs injector allows the injection of solution droplets. The liquid injection head is composed of liquid injector, mixture chamber and mixture injector (Fig. 2). The liquid injector pulses the precursor liquid into the mixing chamber where the liquid and the N₂ gas were blended. Finally, the mixture injector introduces in a pulsed regime a precursor aerosol.

Fig. 2. Schematic layout of liquid injection head.

Table 1

Parameters used for	41-0-TiO-	composite film	denosition b	
arameters used for	$A_{12}U_{2} - HU_{2}$	o composite inn	i debosition d	V DLI-IVIUC V D

Working pressure	10 mbar
Substrate temperature	400 °C
TTIP flow rate	0.1 g/min
Al ₂ O ₃ NPs solution opening time	3 ms
Al ₂ O ₃ NPs solution frequency	2 Hz
N ₂ carrier gas flow	500 sccm

The precursor and α -Al₂O₃NPs solutions were kept in vessels at room temperature and pressurized under 3.5 and 1 bar of N₂ atmosphere, respectively. The precursor and Al₂O₃ were simultaneously introduced in the vaporizer chamber. After flash evaporation of both solutions in the vaporizer heated at 150 °C, the resulting vapor was transported into the reaction chamber by a N₂ and O₂ gas flow. N₂ was used as carrier gas whereas O₂ was used as a reactant. The deposition time is 20 min at the deposition

Fig. 3. Volume size distribution of Al₂O₃ suspension ultrasonicated during 15 min.

Download English Version:

https://daneshyari.com/en/article/1690036

Download Persian Version:

https://daneshyari.com/article/1690036

Daneshyari.com