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a b s t r a c t

Time scale analysis is a well-established method in combustion science to identify slow and fast pro-
cesses, but is also required for multi-scale modeling of turbulence–chemistry interaction. Models such
as flamelet are based on scale separation arguments, which require a suitable definition of chemical time
scales. In this article we study different time scale definitions. Two definitions previously published in the
literature as well as two new definitions are investigated in detail. Most time scales require the compu-
tation of the eigenvalues of the chemical Jacobian, which is computationally expensive especially for lar-
ger chemical reaction mechanisms. One of the new definitions also requires the Jacobian of the chemical
source term, whereas the computation of the second newly proposed time scale is computationally
straight-forward since neither one is needed. We evaluate the four methods on a simple one-step react-
ing system and a partial oxidation flame which combines an oxy-fuel type reaction and a fuel-rich
reforming post flame zone. Most of the considered time scale definitions provide similar results whereas
the computational effort differs significantly.

� 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

Combustion systems are objects of governmental regulations
and a ‘‘validated, predictive, multi-scale, combustion modeling
capability to optimize the design and operation of evolving fuels
in advanced engines for transportation applications’’ is required,
cf. [1]. The term ‘‘multi-scale’’, i.e. the coexistence of different time
and/or length scales, illustrates one major characteristic of com-
bustion. In the absence of transport processes, combustion chemis-
try leads to a system of stiff ODEs. The term ‘‘stiff’’ usually refers to
a large difference between the largest and the smallest eigenvalues
of the Jacobian. A number of model reduction methods are based
on time scale respectively eigenvalue analyses. The Intrinsic Low
Dimensional Manifold (ILDM) method [6,7] is based on the evalu-
ation of slow time scales and defines a subspace significantly smal-
ler than the original. Another example is the Computational
Singular Perturbation (CSP) method [8,10,9] to identify the fast
reaction subspace. CSP is able to analyze the dynamics and identify
fast and slow time scales [2,11,12]. Here, the slow and thus charac-
teristic time scales are driving the process whereas the fast time
scales become exhausted. Najm et al. [11] give a short summary
on the application of the CSP in reactive flows. In the Level Of
Importance (LOI) method [4,5,3] individual species time scales
are important when identifying steady-state species in skeletal
mechanism development.

For the simulation of turbulent combustion using either RANS
or LES methods, the modeling of turbulence–chemistry interaction
(TCI) is a major topic, by e.g. providing a suitable closure for the
chemical source term. Both turbulence (from integral to Kolmogo-
rov) and chemistry are characterized by a large range of time and
length scales. Many models such as flamelet use the assumption of
scale separation between turbulence and chemistry and allow a
decoupling of the solution methods, cf. the books [33–35,1,36–
38] for comprehensive reviews of multi-scale combustion meth-
ods. Time and length scales are also used to define characteristic
numbers such as Karlovitz (Ka) or Damköhler (Da) and they are
used to identify different regimes.

From this discussion, it becomes apparent that a suitable defini-
tion for the chemical time scale is of fundamental importance. This
holds especially when chemistry is coupled to transport processes,
see e.g., [17,13,15,16] for applications using a combined analysis.
When considering rather slow processes such as fuel-rich reform-
ing, the definition of a feasible and characteristic time scale is not
straightforward due to the absence of a well defined reaction-zone.
For this purpose, the present investigation focuses on the applica-
tion and comparison of different characteristic chemical time scale
definitions using both a simple test problem and a partial oxidation
flame with three distinctively different regions. In this article, two
new definitions for a time scale are introduced. Their ability to rep-
resent the characteristic time scale and thus to retain the system’s
dynamics is analyzed. In addition, two established definitions from
the literature are compared to the new definitions. In our first
example, the time scale analysis is applied to a simple test problem
including a global one-step reaction. In the second example, a set
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of homogeneous reactor setups derived from a previously investi-
gated partial oxidation flame with a CO2 diluted fuel stream and
pure CO2 as oxidizer is considered. These are chosen in order to
investigate significantly different reaction dynamics due to varying
equivalence ratios. Oxy-fuel processes can lead to significantly dif-
ferent reaction dynamics. The use of pure CO2 as oxidizer increases
the flame temperature and thus the reaction velocity [18]. On the
other-hand, a dilution with CO2 significantly decreases the flame
temperatures and thus the reaction speed [19]. Further, the chosen
oxy-fuel composition at high equivalence ratios enforces partial
oxidation reactions, which exhibit much slower dynamics [16].
Thus, an oxy-fuel composition in fuel lean, stoichiometric and fuel
rich mixture is used to study the time scales definitions within dif-
ferent system dynamics.

A description of the mathematical formulation of the time scale
definitions is presented in Section 2. The test problem and the cor-
responding results are presented in Section 3. The partial oxidation
flame used as a suitable test case for the different definitions of
time scales is presented in Section 4. Results and a discussion
can be found in Sections 5 and 6 summarizes the results.

2. Mathematical fundamentals of time scale analysis

Most definitions of time scales are based on the evaluation of
the eigenvalues of the Jacobian matrix of the chemical source term.
This is a standard method in linear algebra, cf. e.g., [20]. However,
we briefly summarize the fundamentals of eigenvalue analysis and
its specific application in Section 2.1 and present the different time
scales in the following subsections of Section 2.2. Throughout this
paper k�k stands for the Euclidean vector or matrix norm,
respectively.

2.1. Jacobian matrix and eigenvalues

The temporal evolution of mass fractions and temperature of a
reacting chemical system is described by the ordinary differential
equation

d
dt

Y

T

� �
ðtÞ ¼ _xðY1; . . . ;Ynsp ; TÞ; ð1Þ

Y

T

� �
ð0Þ ¼

Y0

T0

� �
; ð2Þ

with the vector of species mass fraction Y ¼ ðY1 . . . Ynsp Þ
>. In the

reaction system, the conservation of all elements must be ensured.
Thus, the number of elements ne such as H or O represents the min-
imum number of linearly dependent equations. When evaluating
the eigenvalues of this system, we find at least ne trivial eigenvalues
[21].

The Taylor expansion of _x with respect to Y0 at Ye reads

_xðYeÞ ¼ _xðY0Þ þ D _xðYe � Y0Þ þ OððYe � Y0Þ2Þ; ð3Þ

and by the linearity of the differential operator we have

d
dt
ðYe � Y0Þ ¼ D _xðYe � Y0Þ þ OððYe � Y0Þ2Þ:

The matrix D _x :¼ D _xij
� �

i;j¼1;...;nsp
¼ @ _xi

@Yj
ðY0Þ is the Jacobian of _x at

time t0. By setting E:¼(Ye � Y0) and dropping all high-order terms
we obtain that E(t) is the solution of the linear ordinary differential
equation with constant coefficients

d
dt

EðtÞ ¼ D _xEðtÞ; ð4Þ

Eðt0Þ ¼ E0: ð5Þ

By a simple computation we find that

EðtÞ ¼ eðt�t0ÞD _xE0; ð6Þ

is the unique solution of Eqs. (4) and (5) where E0 = Ye � Y0 is the
initial value. Note that expðt � t0ÞD _x is the matrix exponential
function, which is defined by its Taylor series. A popular approach
to an analytical solution of Eqs. (4) and (5) is to transform
D _x ¼ VDV�1, where, in general, V is formed by a non-orthogonal
eigenvector basis while D is a tridiagonal matrix.

2.2. Time scales

In the following section, different time scale approximations
previously established in the literature and two new ones pro-
posed here are described in detail.

Note that there is a general difference between the first two
definitions, which are often used in mechanism reduction meth-
ods and the last two definitions. The first two approaches split
the time scales into two subsets. One subset forms the fast
and thus dissipative time scales. The remaining time scales re-
sult in a subset of relevant time scales. Now, we are interested
in one single time scale, which can be seen as the characteristic
time scale of the chemical system to be compared to the time
scales of e.g. the flow problem. In order to select such a single
characteristic time scale, an appropriate criterion needs to be
defined. This selection is carried out by first identifying a ‘‘rele-
vant subspace’’ of the system’s dynamics and second using the
fastest of them as characteristic time scale. Introduced by Cau-
dal et al. [14], the relevant subspace is formed by the minimal
set of eigenvectors such that kð

P
i2Iaiv iÞ � _xk is smaller than

some e > 0. In contrast, in the ILDM method, the subspace is
formed by the eigenvectors related to the small eigenvalues,
i.e. to slow processes/larger time scales. A characteristic time
scale can then be found in this reduced system as the inverse
of the largest eigenvalue related to the eigenvectors, which span
the ILDM.

The last two definitions result in a single time scale only, which
is assumed to represent the characteristic time scale and thus the
system’s dynamics. In the following, 4 algorithms are presented,
which approximate the characteristic time scale for a particular
reaction system.

2.2.1. Eigenvalue time scale
We recall in the following section the methodology presented in

Caudal et al. [14] for the calculation of time scales based on eigen-
value analysis and make the same assumptions concerning the
mathematical characteristics such as e.g. the algebraic/geometric
multiplicity of the eigenvalues and their eigenvectors. However,
it is important to note that in a complex reaction mechanism,
the algebraic and geometrical multiplicity of the eigenvalues,
which is here assumed to be one can differ. Nevertheless, the solu-
tion of the decomposition of the matrix, as shown in the previous
section, can still be found by a Jordan decomposition. For a discus-
sion in more detail, see [20].

Again, we transform (6) into a more convenient form by setting
D _x ¼ VDV�1, where V ¼ fv1; . . . ; vnspg is a matrix of eigenvectors
and D is a diagonal matrix with Dii = ki and the eigenvalues and
eigenvectors are in general complex valued. The assumptions in
[14] simplify the analysis performed in the following. For real val-
ued eigenvalues, Ei ¼ ðE0Þieðt�t0Þki describes the exponential evolu-
tion of the ith component. At t = t0 we have the characteristic
velocity ki. For complex valued eigenvalues, the eigenvectors are
also complex. By splitting the system into a real and a complex part
and further by using a complex-to-real transformation we obtain a
system in the new eigenvector basis
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