[Vacuum 118 \(2015\) 142](http://dx.doi.org/10.1016/j.vacuum.2015.01.012)-[146](http://dx.doi.org/10.1016/j.vacuum.2015.01.012)

Contents lists available at ScienceDirect

Vacuum

journal homepage: www.elsevier.com/locate/vacuum

Liquid-phase-deposited high dielectric zirconium oxide for metaloxide-semiconductor high electron mobility transistors

Chih-Chun Hu^a, Chu-An Chiu^a, Chien-Hua Yu^a, Jian-Xuan Xu^a, Tsu-Yi Wu^a,

a Institute of Microelectronics, Department of Electrical Engineering, Advanced Optoelectronic Technology Center, National Cheng-Kung University, Tainan

article info

Article history: Received 30 June 2014 Received in revised form 8 January 2015 Accepted 10 January 2015 Available online 17 January 2015

Keywords: AlGaN/GaN MOSHEMT Liquid phase deposition $ZrO₂$

1. Introduction

III-nitride semiconductor materials have been investigated as high promising semiconductor materials for high power/high frequency devices $[1-4]$ $[1-4]$ $[1-4]$. However, Schottky gate in GaN-based HEMTs may suffer from higher gate leakage and lower breakdown voltage, which limit the device performance. MOS gate structures using a thin insulator film between the gate electrode and the semiconductor could suppress these problems. High-k materials such as TiO₂, and Al₂O₃ have been widely used as gate dielectrics $[5-8]$ $[5-8]$. These materials are able to maintain the capacitance density of thin SiO₂ films while providing low leakage current. Among these materials, ZrO₂ has great potential due to its high dielectric constant, and larger energy bandgap. On the other hand, as compared to other insulator deposition methods, the Liquid-phase-deposited (LPD) process provides a low-cost and low-complex method to form oxide layers at room temperature $[5-8]$ $[5-8]$, which can prevent the defects from high temperature processes. In this paper, appli-

cations of the AlGaN/GaN MOSHEMT with LPD-ZrO₂ thin film have

2. Device and fabrication

been investigated.

The cross-sectional view of the fabricated device is shown in [Fig. 1.](#page-1-0) The AlGaN/GaN HEMT structure was prepared by an MOCVD system on a silicon substrate. The structure is composed of a 3.3 μ m buffer layer, a 1.5 μ m undoped GaN channel layer, a 30-nm undoped $Al_{0.26}Ga_{0.74}N$ barrier layer, and a 2-nm undoped GaN cap layer. The measured Hall mobility and sheet carrier concentration were 1373 cm²/V s and 1.06 \times 10¹³ cm⁻², respectively. The device isolation was accomplished by an inductively coupled plasma reactive ion etching system down to the buffer layer. Ti/Al/Ni/Au was deposited as the source/drain ohmic contacts by an electron beam evaporation system, and followed by annealing at 850 \degree C in N2 environment. Next, the LPD solution was prepared as follows: The 0.1 M zirconium sulfate $(Zr(SO_4)_2 \cdot 4H_2O$, Alfa Aesor) of 25 ml and 0.3 M ammonium persulfate $((NH_4)_2S_2O_8$, Riedel-de Haen) of 25 ml were mixed and stirred 5 min for the deposition solution of $ZrO₂$ films. The sample was then immersed into the solution to

Po-Wen Sze ^b, Chang-Luen Wu ^c, Yeong-Her Wang ^{a, *}

701, Taiwan

^b Department of Electrical Engineering, Kao Yuan University of Technology, Kaohsiung 821, Taiwan ^c Transcom Inc., Tainan 741, Taiwan

ABSTRACT

AlGaN/GaN metal-oxide-semiconductor high electron mobility transistor (MOSHEMT) with a liquid phase deposited (LPD) $ZrO₂$ thin film as gate insulator was fabricated. Compared with the conventional HEMT, the maximum drain current increases from 492 to 627 mA/mm, and leakage current is four orders magnitude lower. The gate swing voltage and off-state breakdown were also improved while applying ZrO₂ oxide layer.

© 2015 Elsevier Ltd. All rights reserved.

 $*$ Corresponding author. Fax: $+886$ 6 2080598. E-mail address: yhw@ee.ncku.edu.tw (Y.-H. Wang).

Fig. 1. Cross-sectional schematic of the AlGaN/GaN MOSHEMT.

deposit ZrO₂ films at 30 °C. The concentration of $(ZrSO₄)₂$ and $(NH_4)_2S_2O_8$ were maintained at 0.05 M and 0.15 M. The ohmic contact characteristics did not degrade after the sample was immersed into the LPD solution. Finally, the Ni/Au gate electrode was formed by sputtering. The conventional HEMT without using LPD technique was fabricated on the same wafer with the same process.

3. Results and discussion

The growth rate of $ZrO₂$ film is shown in Fig. 2. The deposited rate was really stable which was easy to control the deposited $ZrO₂$ thickness and reproduce the process. Fig. 3 shows the X-ray diffraction (XRD) analysis of the $ZrO₂$ film on n-GaN. The XRD patterns show no peak which indicate that the LPD $ZrO₂$ film is amorphous. Fig. 4 presents the 2D and 3D AFM images of asdeposited $ZrO₂$ films for 10 nm, 20 nm, and 30 nm. The corresponding RMS value is 4.33 nm, 3.68 nm and 6.26 nm, respectively.

[Fig. 5](#page--1-0) shows the X-ray photoelectron spectroscopy (XPS) spectra of the ZrO₂ film. The binding energies of Zr $3d_{5/2}$ and Zr $3d_{3/2}$ are observed at 183.06 and 185.46 eV, with a separation of 2.4 eV between the peaks which is a typical characteristic of the Zr^{2+} in $ZrO₂$ film. The O 1s spectra can be divided into two peaks, including O_2 from $ZrO₂$ films and the hydroxyl groups resulting from the chemisorbed water [\[9\].](#page--1-0)

The capacitance-voltage $(C-V)$ measurements of HEMT and MOSHEMT at 1 MHz are shown in [Fig. 6](#page--1-0). A small hysteresis can still be observed. The relative dielectric constant of the oxide films can be obtained by calculating the following equation:

$$
1/C_{HEMT} + 1/C_{ox} = 1/C_{MOSHEMT}
$$
 (1)

Fig. 2. The growth rate of the deposited $ZrO₂$ film.

Fig. 3. XRD analysis of the deposited $ZrO₂$ film on n-GaN.

and

$$
C_{ox} = \frac{\varepsilon_r \varepsilon_0 A}{t_{ox}} \tag{2}
$$

The calculated interface state density was found to be 4.78×10^{12} cm⁻² eV⁻¹ [\[10\].](#page--1-0) The dielectric constant of the ZrO₂ film is about 20.43.

[Fig. 7](#page--1-0) shows the $I_{DS}-V_{DS}$ characteristics of the conventional HEMT and the MOSHEMT. The maximum drain current of the conventional HEMT is 492 mA/mm while the maximum drain current of MOSHEMT with 10 nm and 20 nm $ZrO₂$ film are 627 mA/mm and 600 mA/mm, respectively. The larger drain current in the MOSHEMT may be partly attributed to the reduced

Fig. 4. 2D and 3D AFM images of as-deposited $ZrO₂$ films (a) 10 nm, (b) 20 nm, and (c) 30 nm. The corresponding RMS value is 4.33 nm, 3.68 nm and 6.26 nm, respectively.

Download English Version:

<https://daneshyari.com/en/article/1690193>

Download Persian Version:

<https://daneshyari.com/article/1690193>

[Daneshyari.com](https://daneshyari.com)