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A rarefied gas flow through a channel of zigzag shape is calculated over the wide range of the gas
rarefaction and for several values of the aspect ratio applying the linearized kinetic equation. In the
hydrodynamic flow regime, the kinetic solution is compared with that obtained from the Stokes equa-
tion. An approach to calculate a flow rate through a chain composed from an arbitrary number of zigzags
is proposed. It was found that in some situations, the flow rate through a zigzag channel is higher than
that trough a straight channel of the same length.
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1. Introduction

In modeling of rarefied gas flows through long pipes, it is quite
usual to consider a straight channel or tube, see e.g. Refs. [1-6].
Such results are used to model gas flow in microfluidics [ 7], vacuum
systems [8], in crevices [9] etc. In practice, one deals with pipes
having bends and/or elbows, i.e. the pipes are not straight. More-
over, a crevice appeared as a result of cracks of vacuum chambers is
not straight and it has a complicated shape, for instance, the shape
of saw teeth. As a result, the flow rate of gas through non-straight
channel can be significantly different from that estimated for
a straight one.

Some results on gas flow through a single elbow or bend are
reported in Refs. [10—14]. The flow in the single 90° corner was
simulated in Ref. [10] using the DSMC method and no flow sepa-
ration was found even for the high flow rate. The authors of Ref. [11]
implemented the compressible Navier—Stokes equation to the
numerical simulations of the slip flow through microchannel with
two 90° bends. They reported that in the considered twisted
geometry the mass flow rate is reduced by ~160% in comparison
with that for a straight channel with the same overall dimensions.
The gas flow through channels with a right-angled bend has been
numerically analyzed in Ref. [12] using the incompressible
Navier—Stokes equations with the velocity slip boundary condi-
tions to study the effect of the fillet radius on the flow
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characteristics. The flow separation was found for the fillet radius
equal to zero. The Lattice Boltzmann method was implemented in
Ref. [13] to study the gas flow in a single 90° microchannel. The
mass flow rate calculated for the Knudsen number varying in the
range 0.1-0.5 is slightly greater than that of the straight channel of
the same length when the same pressure difference was applied.
The mass flow rates and the pressures losses are measured in the
work [14] for three bend configurations: miter, curved and double-
turn. The mass flow rate in all devices is found smaller than that of
a straight microchannel, namely the lowest flow rate, about 70% of
the straight channel rate, was measured in the miter-bend. The
detailed pressure measurements indicate the flow separation in
microchannel with miter-bend.

However, the situation when a channel has many bends, i.e. it
consists of a chain of bends, has not been studied yet. In such
a situation, a two-dimensional periodic gas flows should be
considered. Some examples of other shapes of periodic flows of
rarefied gases were considered in Refs. [15—17].

The aim of the present paper is to calculate a rarefied gas flow
through a channel of zigzag shape over a wide range of the gas
rarefaction and for several values of the channel aspect ratio.

2. Statement of the problem

Consider a channel of zigzag shape connecting two chambers as
is shown in Fig. 1. A pressure in the left chamber is maintained
equal to p; and that in the right chamber is equal to p,. For the sake
of certainty, we assume p; > p,. The number of the elbows N is
assumed to be so large that the channel is represented as a chain of
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single channel

P2

Fig. 1. Scheme of zigzag channel.

periodic structures. The element of this chain can be chosen by
several ways, e.g. an elbow or straight short channel. In order to
simplify the further calculations, the straight channel emphasized
in Fig. 1 will be considered as a single element of the chain. A
scheme of this straight single channel is depicted in Fig. 2, where
a is the channel height and b is its length. The channel width in the
z-direction is assumed to be sufficiently large so that the gas flow
can be considered as two-dimensional.

Thus, the solution of the problem can be divided in two stages.
First, a gas flow through a single channel is calculated. In the second
stage, the methodology to calculate a flow rate through a long tube
or channel at arbitrary pressure drop elaborated in Refs. [1,2,18—20]
is used to calculate the flow rate through a channel composed from
many channels connected in the zigzag manner.

3. Flow through a single channel
3.1. Input equation

Consider a two-dimensional flow through a straight channel
shown in Fig. 2. The gas inflows into the channel through the
surface fixed at y’ = a and stretched over the interval 0 < X’ < a. The
outlet of the gas is fixed at X’ = b with y’ varying as 0 <y’ < a. The
pressure drop between the inlet and outlet of the single channel is
denoted as Ap, while pp denotes the average pressure in the
channel. Since the number of the single channels N is large, i.e. the
total length of the zigzag channel equal to Nb is large, the pressure
drop Ap across each single channel can be assumed to be small
compared to its average value py, i.e.

Ap < po, (1)

even if the total pressure difference (p; — p2) is large.

The results will be presented in terms of the reduced flow rate
Gp related to the mass flow rate per length unit in the z-direction
M as

. a’Ap
M - GP bvm . (2)
The coefficient Gp is determined by the aspect ratio
B =b/a G)

po + Ap/2
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Fig. 2. Flow scheme and coordinates for single channel.

and by the local rarefaction parameter defined as

1/2
Yo = (z’ﬂ) : (4)

m
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where p is the gas viscosity and v, is the most probable molecular
speed, Ty is the gas temperature in equilibrium, k is the Boltzmann
constant and m is the molecular mass of the gas. The quantity
? = uvm/po represents the equivalent free path so that the rarefac-
tion parameter is inversely proportional to the Knudsen number.

Since we are going to consider the whole range of the rarefac-
tion parameter, the problem must be solved on the level of
the velocity distribution function f(r',v), where r is the two-
dimensional position vector and v is the molecular velocity. The
number density n, bulk velocity &’ and temperature T are calculated
via the distribution function f{r,v) as

n = /fdv, W — %/vfdv, T — %/ V2fdv, (5)

where V=v —u'.

The distribution function obeys the kinetic Boltzmann equa-
tion [1,21,22]. To reduce the computational effort, the
Bhatnagar—Gross—Krook (BGK) model [23] is used here. The
further derivations will be done in the following dimensionless
quantities
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Since the pressure drop is small (1), the distribution function
can be linearized as
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where ng is the equilibrium number density. Thus, the average
pressure gradient £ is used as the small parameter of the lineari-
zation. Substituting this representation into (5), we obtain the
linearized form of the moments

_1Ap

f(rc = Bpy’ (7)

n(x,y) = no[l+r(x,y)¢l, (8)
ul(xvy) = vmu(x,y)E, (9)
T(x,y) = To[1 + (x,¥)¢], (10)
where
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Combining Egs. (2) and (11), the reduced flow rate is obtained as

1
Gp =2 /ux(x,y)dy, 1<x<B. (12)
0

As has been noted above, the coefficient Gp is a function of
the aspect ratio B and rarefaction parameter 6, i.e. Gp = Gp(B,0). In
the case of infinite channel, i.e. B — «, the quantity Gp tends to that
defined in Ref. [1] for an infinite channel.

The linearized BGK model in our notations reads

oh  oh 23
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