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a b s t r a c t

In this paper we propose an extended, two dimensional model describing the propagation of scintillation
photons inside a cuboid crystal until they reach a PMT window. In the simplest approach the model con-
siders two main reasons for light losses: standard absorption obeying the classical Lambert–Beer law and
non-ideal reflectivity of the ‘‘mummy” covering formed by several layers of Teflon tape wrapping the
sample. Results of the model calculations are juxtaposed with experimental data as well as with predic-
tions of an earlier, one dimensional model.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Looking back in time in material sciences we find the paper of
Dujardin et al. [1], in which the dependence of scintillation light
yield on crystal geometry was discussed so precisely for the first
time. After that, an increasing interest in this field was observed,
which was related to the development of optical imaging tech-
niques. More and more efforts were made to study light outputs
as a function of sample size [2–7] or to get numerical results from
optical path modeling with Monte Carlo methods [8–12]. Despite
an obvious complexity of the issue, a simple and smart approach
was presented by Wojtowicz et al. [5], who proposed a so-called
two-ray (2R) model for a scintillation pixel, i.e. a cuboid crystal,
the height of which was much larger than the two other dimen-
sions. Although the model limited the problem to a single dimen-
sion, in many cases it used to reproduce the experimental
observations reasonably well. In this paper we extend this model
on two dimensions (2D). The assumption that a scintillation pho-
ton has two degrees of freedom allows us to take into account,
besides the obvious absorption losses, the reflection losses, which
was not possible in the 2R model. The new 2D model will be
employed to fit several sets of data points. The quality of the fits
will be compared with those obtained within the 2R approach.

2. Assumptions

Recalling the basic ideas of the 2R model, one has to take a
straight line representing the one-dimensional crystal, to place

the radioactive source at one edge and the photomultiplier (PMT)
window at the second edge, and to presume that a luminescence
event has a uniform probability distribution in the whole area of
the linear crystal. An assumption of a lossless photon reflection
from the crystal edge opposite to the PMT is also necessary (in
practice, this condition is asserted by a Teflon covering, which usu-
ally forms a tight ‘‘mummy” over the crystal, leaving the bottom
wall uncovered to let the light reach the PMT). The effect of light
absorption is considered according to the classic Lambert–Beer
law, which leads to the following equation [5] (see Fig. 1 for
designations):

dLY ¼ LY0
1
2H

ðe�ly þ e�lð2H�yÞÞdy ð1Þ

where l is an absorption coefficient and LY0 is a so-called intrinsic
light yield, which would theoretically be displayed by a point-size
crystal. One can argue that it is not a Cauchy issue and thus it does
not have a unique solution. Due to the lack of initial conditions we
present an interpretation of the problem, in case of which we do
not have to deal with differential equations. Instead of a differential
description, we simply take a mean derived with the free parame-
ters, i.e. the initial position and direction of the photon.
Let us denote with r the length of the photon path starting from a
certain point (of its creation) and reaching the PMT window. Then
we have:

LY ¼ hLY0e�lri ¼ LY0
1
2H

X2
i¼1

Z H

0
e�lriðyÞdy ð2Þ

where i labels the two possible initial directions of the photon (up
and down), hence the ½ factor simply normalizes the sum. The ini-
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tial position y is a continuous variable, with its range covering the
entire area of a crystal [0, H]. For clarity we stress that the notion
of a mean is valid if possible initial directions and positions are
equally probable. The used notation is in a full agreement with that
in [5].

Now, based on the 2R model, we define the observed light yield
in the 2D case as a mean over free parameters. However, contrary
to 2R, the photon direction is determined by a single continuous
parameter # (an angle) and the photon position by two parame-
ters: x0 and y0 (Fig. 1). We suppose that the photon path length r
depends on these three parameters, i.e. r = r(#, x0, y0). As men-
tioned before, not only light absorption is taken into account, but
reflection losses as well. To describe the latter we use a constant
reflection coefficient R, which quantifies how much light remains
inside the crystal after a single act of reflection from the Teflon cov-
ering the wall (I = I0R). It can easily be imagined that the contribu-
tion from a single photon to LY will be reduced by a factor of R
raised to the power equal to the number of reflections that this
photon has experienced until reaching the PMT window. Let us
to denote this number of reflections with o and assume that it
depends on each of the free parameters, i.e. o = o(#, x0, y0), like in
case of r. The mean value can be now written as:

LY ¼ hLY0R
oðx0 ;y0 ;#Þe�arðx0 ;y0 ;#Þi

¼ LY0
1

2pAH

Z 2p

0

Z H

0

Z A

0
Roðx0 ;y0 ;#Þe�arðx0 ;y0 ;#Þdx0dy0d# ð3Þ

and we have to aim at finding the expressions for o and r.

3. Number of reflections

We firstly note that the solution hardly depends on the initial
direction of the photon propagation. When # e [0, p), the scintilla-
tion photon is passing upward and before reaching the PMT win-

dow it has to be reflected from the upper edge of the crystal. In
turn, if # e [p, 2p), the photon is passing downward and it reaches
the PMT windowwithout changing its vertical velocity component.

Considering # e [p, 2p) we claim that the number of reflections
of the photon before reaching the PMT window is equal to:

o ¼ y0 � vð#Þj tan#j
Aj tan#j

� �
þ 1 ð4Þ

where

vð#Þ ¼ A� x0; # 2 � 1
2p;

1
2p

� �
x0; # 2 1

2p;
3
2p

� �
(

bxc ¼ maxk6xfk : k 2 Zg ðfloor functionÞ
The function v(#) measures the distance in horizontal direction

between the initial position of the scintillation photon and the wall
pointed by its initial direction. Introducing an extra variable
n = o � 1 we notice that n = l/(A|tan#|), where l is the distance in
vertical direction between the points of its first and last reflection
before reaching the PMT window, and A|tan#| is the vertical dis-
tance between two subsequent reflections (Fig. 2). Hence n counts
the photon reflections, reduced by one. Let us divide the vertical
distance between the photon initial position and the PMT window
into three parts:

y0 ¼ yi þ lþ yf ð5Þ

where yi represents the distance between the vertical coordinates of
the initial position and the first reflection point, and yf is the dis-
tance between the vertical coordinates of the last reflection point
and the PMT window (Fig. 2). Due to unknown position of the last
reflection yf remains undetermined at the moment. However, if
we knew the horizontal distance between the initial position and
the wall of the first reflection, we could determine yi. Therefore
we use the already introduced v(#) function and get yi = v(#)|tan#|.

Fig. 1. Simple visualization of the studied system (a scintillation event takes place
in the point determined by~r0 and the photon is propagating in direction described
by #; the angle is measured like in an ordinary polar coordinate system).

Fig. 2. Division of the vertical distance into three parts.
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