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a b s t r a c t

A new framework of simulation of reactive flows is proposed based on a coupling between accurate
reduced reaction mechanism and the lattice Boltzmann representation of the flow phenomena. The
model reduction is developed in the setting of slow invariant manifold construction, and the simplest lat-
tice Boltzmann equation is used in order to work out the procedure of coupling of the reduced model with
the flow solver. Practical details of constructing slow invariant manifolds of a reaction system under var-
ious thermodynamic conditions are reported. The proposed method is validated with the two-dimen-
sional simulation of a premixed counterflow flame in the hydrogen-air mixture.

� 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

Accurate modeling of reactive flows requires the solution of a
large number of conservation equations as dictated by detailed reac-
tion mechanism. In addition to the sometimes prohibitively large
number of variables introduced, the numerical solution of the gov-
erning equations has to face the stiffness due to disparate time scales
of the kinetic terms. These issues make computations of even simple
flames time consuming, and have particularly negative impact on
the lattice Boltzmann method [31,32], whose number of fields (dis-
tribution functions or populations) may be significantly larger than
the number of conventional fields (density, momenta, temperature,
species mass fractions). The lattice Boltzmann (LB) method is a rel-
atively novel approach to numerical flow simulations, and recent
studies have proved that it is competitive to traditional methods
when simulating compressible [28] and turbulent flows [29] in
terms of both accuracy and efficiency. Although this makes LB a good
candidate for computing reactive flows, applications in this field are
still limited by the stiffness of the governing equations and the large
number of fields to solve.

On the other hand, the difference of time scales can be exploited
in order to construct a reduced description of the detailed model. In

fact, because of the stiffness, the dynamics of homogeneous reactive
systems is often characterized by a short transient towards a low
dimensional manifold in the concentration space, known as the slow
invariant manifold (SIM). The subsequent dynamics is slower and it
proceeds along the manifold itself, until a steady state is reached.
Constructing such manifolds can lead to a simpler and less stiff
description of the reactive system, where the fast transient is ne-
glected and the slow dynamics can be reproduced with high accu-
racy. Therefore, much effort has been devoted to achieving that
aim; the intrinsic low dimensional manifold (ILDM) approach [35],
the computational singular perturbation (CSP) method [36] and
the Flamelet-Generated Manifolds (FGM) method [22,23] are repre-
sentative examples.

In this work, we make use of the method of invariant grids (MIG)
[1–3] which is also based on the notion of SIM, and it has been
recently elaborated for combustion applications [8,9] with the aim
of automating the model reduction procedure. In particular, its
realization follows two key steps. First, an initial rough reduced
description of the complex chemical mechanism is constructed
making use of the notion of quasi equilibrium manifold (QEM).
Second, the latter initial approximation is iteratively refined until
the invariant grid is constructed. Finally, we employ the reduced
model of the hydrogen mechanism in a lattice Boltzmann code for
simulating laminar flames throughout a homogeneous mixture.

This paper is organized in sections as follows. In Section 2, the
kinetic equation for a batch reactor is reviewed. The construction
of a reduced model using the method of invariant grids is briefly
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described in Section 3. In Section 4, the lattice Boltzmann method
for reactive flows is reviewed, and the coupling with a reduced
model is presented in Section 4.2. Results are discussed in Section
5. A detailed discussion on the construction of thermodynamic
Lyapunov functions, and on the exact computation of their deriva-
tives (as requested in order to implement the MIG to combustion
applications) is presented in Appendix A. Finally, the exact evalua-
tion of the Jacobian matrix of a system of kinetic equations is ad-
dressed in the Appendix B.

2. Detailed reaction kinetics in a batch reactor

In this section, we focus on homogeneous mixtures of ideal
gases reacting in a closed system. Let x1, . . . ,xn be n chemical spe-
cies participating in a detailed reaction mechanism with r revers-
ible steps

m0s1x1 þ � � � þ m0snxn� m00s1x1 þ � � � þ m00snxn; s ¼ 1; . . . ; r; ð1Þ

where m0si and m00si are the stoichiometric coefficients of species i in
the reaction step s for reactants and products. Let the stoichiometric
vectors be m0s ¼ m0s1; . . . ; m0sn

� �
; m00s ¼ m00s1; . . . ; m00sn

� �
and ms ¼ m00s � m0s. The

reaction rate of step s reads

Xs ¼ Xþs �X�s ;

Xþs ¼ kþs ðTÞ
Yn

i¼1

cai
i ; X�s ¼ k�s ðTÞ

Yn

i¼1

cbi
i :

ð2Þ

Let Ni and V be the mole number of species i and the reactor volume,
respectively, the corresponding molar concentration is given by
ci = Ni/V. The forward and reverse reaction rate constants kþs , k�s take
the Arrhenius form

ksðTÞ ¼ AsT
bs exp

�Eas

RT

� �
; ð3Þ

where As denotes the pre-exponential factor, bs the temperature
exponent, Eas the activation energy of reaction s and R is the univer-
sal gas constant. The rate of change of species i is given by

_xi ¼
Xr

s¼1

msðiÞXs; i ¼ 1; . . . ; n; ð4Þ

with forward and reverse reaction rate constants related by the
equilibrium constant Kc;s ¼ kþs =k�s , which can be obtained by impos-
ing the principle of detail balance at the steady state:

Xþs ¼ X�s ; s ¼ 1; . . . ; r: ð5Þ

In the following, an arbitrary point of the composition space
will be denoted by c = (c1, . . . ,cn), where ci is the molar concentra-
tion of species i. Moreover, a given state of a homogeneous ideal
gas mixture is fully described by a vector c and one independent
intensive property, e.g., the corresponding temperature T. An alter-
native description of the system is also given by w = (Y1, . . . ,Yn) and
two independent intensive properties, e.g., temperature T and total
pressure p, where Yi is the mass fraction of species i.

Under isochoric and isothermal conditions (V, T = const), the
reaction kinetic Eq. (4) are closed, and the temporal evolution of
the species concentrations in the reactor obeys the following sys-
tem of ordinary differential equations:

dc
dt
¼ ð _x1; . . . ; _xnÞT ¼ f ; ð6Þ

whereas, for different cases, additional closure relations are needed.
Two cases are relevant to combustion: isolated reactor with con-
stant volume and mixture-averaged internal energy (V ;U ¼ const),
and thermal isolated isobaric reactor with constant total pressure
and mixture-averaged enthalpy (p; �h ¼ const). In the first case, the
governing equations read

U ¼
Xn

i¼1

UiðTÞYi ¼ const;

dc
dt
¼ ð _x1; . . . ; _xnÞT ¼ f ;

ð7Þ

where for each species i, the temperature dependence of the specific
internal energy Ui is taken into account by a polynomial fit

UiðTÞ ¼ R a1iT þ
a2i

2
T2 þ a3i

3
T3 þ a4i

4
T4 þ a5i

5
T5 þ a6i

� �
�RT: ð8Þ

Here, following [42], the temperature dependence of thermody-
namic properties of species i are expressed in terms of tabulated
constants aji, with j = 1, . . . ,7.

Let Wi be the molecular weight of species i, for closed reactors un-
der fixed total pressure and mixture-averaged enthalpy, the dynam-
ics of the mass fractions Yi obeys the following equation system

�h ¼
Xn

i¼1

hiðTÞYi ¼ const;

ci ¼
pðYi=WiÞ

RT
Pn

j¼1Yj=Wj
;

dw

dt
¼ W1 _x1

�q
; . . . ;

Wn _xn

�q

� �T

¼ f ;

ð9Þ

where the mixture density �q and the specific enthalpy hi of species i
take the explicit form

�q ¼
Xn

i¼1

Wici; hiðTÞ ¼ UiðTÞ þRT: ð10Þ

Notice that, for non-isothermal cases, the temperature corre-
sponding to the composition state w is not explicitly known. There-
fore, the right-hand side of (4) can be evaluated after solving the
two energy conservation equations in (7) and (9) with respect to
T (e.g., using the Newton–Raphson method).

Finally, in a closed chemically reactive system, the atom mole
numbers Nk of each element k must be conserved:

DwT ¼ ðN1; . . . ;NdÞT ;
dNk

dt
¼ 0; Dðk; iÞ ¼ lik

Wi
; ð11Þ

wherelik is the number of atoms of the kth element in species i, and D
is a (d � n) matrix, while d is the number of elements involved in the
reaction. In other words, the vector field f of motions in the phase-
space is always orthogonal (in Euclidean sense) to the rows of D.

The interested reader is delegated to the classical work of Wil-
liams [40] for a detailed discussion on the theory of chemical
kinetics.

3. Reduced description

In our study, the detailed mechanism of Li et al. [4] (9 species,
21 elementary reactions) for hydrogen combustion is considered,
and we search for a reduced description with two degrees of free-
dom. Here, we present a general overview of the method of invari-
ant grids (MIG) for model reduction in chemical kinetics. The
interested reader can find more details in Refs. [1,2,6–9].

3.1. Initial approximation: quasi equilibrium manifold

Approximated reduced descriptions in chemical kinetics can be
based on the notion of quasi equilibrium manifold [1,2]. Hence, let
us construct a quasi equilibrium manifold for a stoichiometric
H2-air mixture under fixed pressure p = 1 bar and enthalpy
�h ¼ 2:8 kJ=kg, corresponding to the temperature T0 = 300 K for
the stoichiometric unburned mixture H2 + 0.5O2 + 1.88N2. A gener-
ic q � dimensional QEM is obtained by solving the following min-
imization problem:
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