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a b s t r a c t 

A sparse stiff chemistry solver based on dynamic adaptive hybrid integration (AHI-S) is developed and 

demonstrated for efficient combustion simulations. In a previous study, a dynamic adaptive method for 

hybrid integration (AHI) was developed to speed up the time integration of chemically reacting flows with 

detailed chemistry. The AHI method solves the fast subcomponent of chemistry implicitly and the slow 

subcomponent of chemistry and transport explicitly, and it was shown that AHI is more accurate and ef- 

ficient than the operator-splitting schemes when there are significant radical sources from the transport 

term. In the present study, the AHI method is first improved to minimize the number of nontrivial entries 

in the Jacobian. Sparse matrix techniques are further integrated into AHI to achieve high computational 

efficiency. The performance of the new AHI-S solver is investigated in constant-pressure auto-ignition 

systems using different mechanisms that consist of 9–2878 species. It is shown that the computational 

cost of the AHI-S solver is overall linearly proportional to the mechanism size and is comparable to that 

of evaluating reaction rates using CHEMKIN-II subroutines. The AHI-S solver achieves speed-up factors 

ranging from approximately 10, for the 9-species hydrogen mechanism, to approximately 30 0 0, for the 

2878-species biodiesel mechanism, compared with the fully implicit VODE solver with Jacobian evaluated 

through numerical perturbations and factorized with dense matrix operations. It is further found that for 

mechanisms with less than approximately 100 species, the time saving of AHI-S is primarily attributed to 

the reduced size of the implicit core of the governing equations, while for mechanisms with more than 

100 species, the computational cost of VODE is dominated by the dense LU factorization, such that the 

time saving of AHI-S is mostly attributed to the sparse LU factorization. The AHI-S solver is then applied 

to unsteady perfectly stirred reactors involving extinction and re-ignition. Speed-up factors from 50 to 

30,0 0 0 are achieved compared with the Strang splitting scheme with the chemistry substeps implicitly 

integrated with VODE, while speed-up factors of 10–100 are achieved compared with the Strang splitting 

scheme implemented with the sparse stiff LSODES solver. In the end, the performance of AHI-S is inves- 

tigated in one-dimensional (1-D) unsteady freely propagating laminar premixed flames for a methane/air 

mixture, for which the time step size in AHI-S is limited by the fastest transport process. A speed-up 

factor of approximately 200 is achieved compared with the Strang splitting scheme for fixed time step 

sizes between 10 −8 s and 10 −6 s. 

© 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 

Detailed chemical kinetics is important for accurate prediction 

of combustion processes such as ignition, extinction and flame 

propagation, while it may involve a large number of species and 

reactions [1] . Recent progress in mechanism reduction, e.g. using 

directed relation graph (DRG) based methods [2–7] , makes it possi- 

ble to obtain accurate yet still comprehensive skeletal mechanisms 
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with less than a few hundreds of species for practical engine fu- 

els. However chemical stiffness may remain in skeletal and even 

reduced mechanisms due to the highly reactive radicals and their 

short timescales, such that the high-cost implicit solvers for ordi- 

nary differential equations (ODE), e.g. VODE [8] and DASAC [9] , are 

typically required for time integration of combustion systems using 

reasonably large time steps. 

To alleviate this problem, dynamic stiffness removal [10] was 

developed to eliminate short chemical timescales for compress- 

ible flow simulations using direct numerical simulations (DNS), 

such that the low-cost explicit solvers can be employed with time 

step sizes up to approximately 20 ns. Implicit solvers are typically 
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required for combustion simulations involving even larger time 

steps. For multidimensional flows, the operator-splitting schemes 

are widely used to separate chemistry integration from that of 

transport processes to avoid the high computational cost for solv- 

ing fully coupled implicit equations [11–15] . Splitting schemes 

however can incur significant errors in certain cases. For exam- 

ple, it was found in Ref. [16] that, when significant radical sources 

are present in the transport term, O (1) splitting errors may occur 

in ignition processes unless small time steps comparable to those 

required for explicit solvers are taken. A dynamic adaptive hybrid 

integration (AHI) method [16] was then developed for effective er- 

ror control in such cases. Significant speed-up was achieved as well 

using AHI compared with the splitting schemes for small and mod- 

erately large mechanisms, say with less than about 100 species, by 

solving only the fast subcomponent of chemistry implicitly. 

Nevertheless, for large mechanisms, Jacobian evaluation and 

factorization can dominate the computational cost in implicit 

solvers, such that analytical Jacobian evaluation [17] , sparse ma- 

trix techniques [18–20] , and adaptive preconditioning methods 

[21,22] can significantly speed up stiff chemistry solvers. As 

reported in Refs. [18,20] , the computational cost for chemistry in- 

tegration can be reduced to approximately a linear function of the 

number of species, N , using sparse matrix techniques, while it can 

scale as O ( N 

2 ) to O ( N 

3 ) using dense matrix operations. The sparse 

matrix techniques are also applicable to AHI to further reduce 

the computational cost, particularly when large mechanisms are 

involved. 

In the present study, a sparse AHI solver (AHI-S) is developed 

to further reduce the size of the fast chemistry subcomponent, 

such that sparser Jacobian can be obtained for improved efficiency. 

The performance of the AHI-S solver is first investigated in auto- 

ignition using mechanisms with 9, for hydrogen, to 2878 species, 

for a biodiesel surrogate. AHI-S is compared with other solvers for 

numerical efficiency in a variety of combustion systems including 

auto-ignition, unsteady perfectly stirred reactors (PSRs) and 1-D 

freely propagating premixed flames. It will be shown that AHI-S 

can achieve similar per-step computational cost to that of fully ex- 

plicit solvers. 

The paper is organized as follows. In Section 2 , the AHI method 

is reviewed and the AHI-S method is formulated, results from the 

AHI-S method for various combustion systems are presented and 

compared with other solvers in Section 3 , and conclusions are 

drawn in Section 4 . 

2. Methodology 

2.1. Review of the AHI method 

The spatially discretized governing equations for typical react- 

ing flows can be expressed as the following ODEs: 

d�

dt 
= S ( �) + M ( �) (1) 

where � is the vector of dependent variables of dimension n �, 

including, e.g. temperature and species concentrations, and S and 

M represent the chemistry and transport terms, respectively. Note 

that in a multi-grid system, � consists of variables at all grid 

points. In the AHI method [16] , fast species and reactions are first 

identified on-the-fly based on reaction timescales defined in a re- 

cent analytic formulation of computational singular perturbation 

(CSP) [23] : 

τi ≡
∣∣∣∣∂ �i 

∂c 
· νi 

∣∣∣∣
−1 

, 

∂ �i 

∂c 
= 

[
∂ �i 

∂ c 1 
, 
∂ �i 

∂ c 2 
, . . . , 

∂ �i 

∂ c N 

]
, νi = [ ν1 ,i , ν2 ,i , . . . , νN,i ] 

T 
(2) 

where τ i is the timescale of the i th reaction, �i is the reaction 

rate, N is the number of species, c k is the mole concentration of 

the k th species, and v k, i is the stoichiometric coefficient of the k th 

species in the i th reaction. The i th reaction is considered to be fast 

if 

τi < τc /β (3) 

where τ c is a threshold timescale that is typically comparable to 

the integration time step �t , and β is a safety factor. The k th 

species is considered to be fast if the following criterion is satis- 

fied for any fast reaction i , ∣∣∣∣∂ �i 

∂ c k 

∣∣∣∣ > βτ−1 
c . (4) 

Note that the safety factor is typically mechanism-dependent and 

different saf ety factors can be optionally used for the identification 

of fast species and reactions. 

The governing equations ( Eq. (1) ) can then be rewritten as: 

d�

dt 
= S f ( �) + g s ( �) , � = 

[
� f 

�s 

]

S f = 

m ∑ 

i =1 

νi �i 

g s = 

n r ∑ 

i = m +1 

νi �i + M (5) 

where �f and �s are the fast and slow variables of dimension 

n f and n � − n f , respectively, n r is the total number of reactions, 

and m is the number of fast reactions. It is assumed that suf- 

ficiently small integration time steps are taken, such that the 

transport term and the energy equation are not stiff. In AHI, the 

ODE system in Eq. (5) is temporally discretized using a first-order 

scheme: [
�n +1 

f 
− �n 

f 

�n +1 
s − �n 

s 

]
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(
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(
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f , �
n 
s 

)
(6) 

where the superscript n indicates the n th time step. The fast vari- 

ables �n +1 
f 

are solved implicitly using the first n f equations of 

Eq. (6) . The slow variables can then be solved explicitly from the 

remaining equations. 

2.2. A sparse AHI solver (AHI-S) 

2.2.1. Sparse Jacobian for the fast chemistry subcomponent 

The chemical Jacobian is typically sparse for most practical fuels 

involving large mechanisms. The sparse pattern of the chemical Ja- 

cobian is first demonstrated using constant-pressure auto-ignition 

governed by 

d y k 
dt 

= 

ω k W k 

ρ
, k = 1 , 2 , . . . , N (7) 

dT 

dt 
= − 1 

ρc p 

N ∑ 

k =1 

h k ω k W k (8) 

ρ = p 

/( 

R u T 

N ∑ 

k =1 

y k 
W k 

) 

(9) 

where the subscript k indicates the k th species, y is mass fraction, 

ω is species molar production rate, W is molecular weight, h is 

specific enthalpy, c p is the mixture-averaged specific heat capacity, 

ρ is density, p is pressure, T is temperature, and R u is the universal 

gas constant. 



Download English Version:

https://daneshyari.com/en/article/169352

Download Persian Version:

https://daneshyari.com/article/169352

Daneshyari.com

https://daneshyari.com/en/article/169352
https://daneshyari.com/article/169352
https://daneshyari.com

