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a b s t r a c t

A general equation for a variance parameter, appearing as a crucial quantity in a simple algebraic expres-
sion for the mean chemical rate, is derived. This derivation is based on a flamelet approach to model a
turbulent premixed flame, for high but finite values of the Damköhler number. Application of this equa-
tion to the case of a planar turbulent flame normal to the oncoming flow of reactants gives good agree-
ment with DNS data corresponding to three different values of the Damköhler number and two values of
the heat release parameter.

� 2011 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

Premixed turbulent combustion can be described in terms of a
combustion progress variable c(x, t), with c = 0 in reactants and
c = 1 in products, satisfying the equation

@

@t
ðqcÞ þ r � ðqucÞ ¼ r � ðqDrcÞ þxc ð1Þ

where q, u and D represent gas density, flow velocity and diffusion
coefficient, respectively, and xc is the chemical reaction rate [1].
Prediction of its mean value �xc either in RANS or LES calculations
is one of the most difficult problems in turbulent combustion mod-
elling [2,3]. One way to address this problem is through a presumed
pdf model in which the mass-weighted pdf ePðc; x; tÞ is assumed to
have a specified shape controlled by the first and second Favre
moments of c, so that ePðc; x; tÞ ¼ ePðc; ~cðx; tÞ; fc002ðx; tÞÞ.

An analysis of three different presumed pdf models [4] at large
values of the Damköhler number Da = tt/tc, where tt and tc are char-
acteristic turbulence and chemical time scales, leads to the simple
result that

�xc ¼ �ccB�q~cð1� ~cÞI ð2Þ

where B, in s�1, is the constant coefficient of the pre-exponential
factor in the global reaction rate expression, and I is an integral
quantity defined later on (see Eq. (38)), whose value depends on
the reaction rate expression as well as the shape of the selected
pdf [4]. Although I is known for a given pdf, its value is uncertain
to the extent that the shape of the pdf is an approximation. Also
�cc is related to the variance fc002 by

�cc ¼ 1�
fc002

~cð1� ~cÞ ð3Þ

so that �cc is equal to unity if fc002 ¼ 0 and is zero if fc002 reaches its
maximum possible value of ~cð1� ~cÞ. In the latter case, for which
Da� 1; ePðc; x; tÞ is bimodal and consists only of delta functions
at c = 0 and c = 1. Before Eq. (2 ) can be used it is necessary to derive
either an expression for �cc or a balance equation for this quantity.

The Favre mean ~cðx; tÞ and variance fc002ðx; tÞ, which determine
the shape of the presumed pdf ePðc; x; tÞ, must be calculated from
closed transport equations. To do so, in addition to several other
closure problems, a model must be provided for the mean scalar
dissipation which appears as a sink term in the variance equation.
The mean scalar dissipation is a measure of the rate at which
molecular diffusion processes lead to small-scale mixing in turbu-
lent flows. It plays an important role in many theoretical descrip-
tions [5–9] of the mean rate of chemical reaction in turbulent
combustion, particularly when Da� 1. If the fuel and oxidiser
are supplied to the combustion zone separately, the scalar dissipa-
tion describes the rate at which they mix and burn. In the case of
premixed combustion the scalar dissipation represents the rate
at which cold unburned reactants and hot fully burned products
are mixed and burned. It is defined as

ev ¼ qD$c00 � $c00=�q ð4Þ

If Da� 1, combustion is confined to thin propagating reaction
zones, whose internal structure resembles that of a laminar flame,
and which separate unburned reactants from combustion products.
The composition gradient appearing in Eq. (4) is then related to that
in a laminar flame. Theory [10,11] and DNS [12] both show that if
Da� 1 the scalar dissipation ev is proportional to the chemical
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source term �xc in the transport equation for the Favre mean ~c; it is
given [10] by the expression

ev ¼ evf ¼ ðcm �
1
2
Þ �xc=�q ð5Þ

where cm ¼ c _xc= �xc and the subscript f signifies combustion in the
laminar flamelet burning regime. On the other hand the classical
expression [8,13]

ev ¼ evt ¼ Cv
fc002 ~�

~k
ð6Þ

where ~k and ~e are the turbulent kinetic energy and its dissipation
rate, respectively. Eq. (6) provides an adequate description of small
scale mixing in nonreactive flows, may also be expected to be appli-
cable to combustion with small heat release and/or at small values
of Da. Published models for ev, whether based on a transport equa-
tion [14,15] or an algebraic expression [8,12] do not properly de-
scribe the necessary transition between these two limits. If an
algebraic model is required, then either the classical nonreactive
flow expression of Eq. (6) is assumed to apply or ev is assumed
[12] to be proportional to evf :

ev ¼ evf

fc002
~cð1� ~cÞ ð7Þ

Swaminathan and Bray [16] report progress in this matter, see also
[17,18]. They extend the analysis of Mura and Borghi [15] by includ-
ing effects of dilatation due to heat release and find

ev ¼ 1þ 2
3

C�c
s0

L
~k1=2

� �
CDc

s0
L

d0
L

þ CD

~�
~k

 !fc002 ð8Þ

at large values of the Damköhler and Reynolds numbers, where s0
L

and d0
L are laminar burning velocity and flame thermal thickness,

respectively, and C�c, CDc and CD are model parameters. The ratio
of the two factors inside the second brackets in Eq. (8) is propor-
tional to the Damköhler number. If Da� 1 and s0

L=
~k1=2 � 1, Eq. (6)

is recovered. On the other hand, when Da� 1; ev is predicted to
be proportional to a chemical rate s0

L=d
0
L but the requirement to re-

cover Eq. (5) is not met.
In the present paper it is argued that failure to use an appropri-

ate expression for ev can lead to serious errors in both RANS and
LES simulations of premixed turbulent combustion. By way of
example, consider a presumed pdf analysis [2,3,19], in which the
mean rate of reaction is determined by integration over the interior
part of the pdf ePðc; xÞ. The classical expression of Eq. (6) predicts
too large a value of ev in comparison with DNS [16]. Use of this
model in the transport equation for the variance fc002 will under-
predict the variance, and thus under-estimate both the interior
pdf values and the mean reaction rate. On the other hand, the flam-
elet expression of Eq. (5) corresponds to a bimodal pdf consisting
only of two Dirac delta functions situated at c = 0 and c = 1, respec-
tively. The interior part of the pdf is zero in this limit and a pre-
sumed pdf model with finite chemical reaction rates cannot
predict a non-zero mean reaction rate. Consequently, at large but
finite values of Da; ev must be close to evf but it cannot be equal
to ev.

The aim of the present work is to derive and test an equation to
predict the variance factor �cc. In order to do so we must also find
an expression for the scalar dissipation ev having appropriate lim-
iting behaviour as Da ?1. It is important to recall here that, in
the limit of infinitely thin flamelets, the scalar variance equation
degenerates toward the algebraic expression given by Eq. (5). On
a numerical point of view such a singular behaviour of the variance
equation may preclude its use, for example in CFD codes. Using in-
stead an equation for the more relevant quantity �cc, together with
the appropriate form of the scalar dissipation rate, and the

appropriate scaling, solves this difficulty. We first derive a general
transport equation for �cc and then perform an asymptotic analysis
for large values of Damköhler number. The resulting transport
equation is applied to the problem of a planar turbulent flame; pre-
dictions are compared with data from DNS.

2. Transport equation for �cc

An unclosed transport equation for �cc can be derived from the
equations for the variance fc002 and mean ~c. Derivation of such an
equation yields

�q~cð1� ~cÞ @�cc

@t
þ ~u � $�cc

� �
¼ r � G� �cc 1� 2~cð Þ½ �xc �r

� ð�q gu00c00 Þ� � ð2cm � 1Þ �xc þ 2�qev ð9Þ

where G is given by

G ¼ �q½ gu00c002 � ð1� 2~cÞgu00c00 � ð10Þ

In Eq. (9) the scalar dissipation ev can be written in two parts, in
terms of the flamelet dissipation evf and a second contribution evt

which is defined by

�qev ¼ ð1� �ccÞ�qevf þ �cc �qevt ð11Þ

so that ev approaches evf as �cc approaches zero. A more precise
expression for ev as �cc goes to zero can be obtained by remembering
that at the limit �cc = 0 and �qev ¼ �qevf ¼ ðcm � 1=2Þ �xc . Then, we
write [20]:

�qev ¼ ðcm �
1
2
� jeccÞ �xc þ �cc �qevt ; �cc ! 0 ð12Þ

where j is an arbitrary constant of order unity.
For small values of ecc, i.e. in the bimodal limit corresponding to

Da� 1, Eq. (9) for �cc becomes:

�q~cð1� ~cÞ @�cc

@t
þ ~u � $�cc

� �
¼ r � Gðecc ! 0Þ

þ ð1� 2~cÞr � ð�q gu00c00 Þh
�2

1
2
� ~c þ j

� �
�xc þ 2�qevt

�
�cc ð13Þ

3. Asymptotic analysis for large damköhler numbers

In the limit of large Damköhler numbers we have ecc ? 0 and
G(ecc = 0) = 0 as in this bimodal limit we have gu00c002 ¼ ð1� 2~cÞgu00c00 . However Eq. (13) requires an expression for the next term
in the linear expansion in small ecc. Such an expression can be de-
rived by considering the pdf ePðcÞ described as in [4] by

eP ¼ adðcÞ þ bdð1� cÞ þ c~f ðcÞ ð14Þ

where ~f is the interior pdf of reactive states. 0 < c < 1. The three
parameters a, b and c can be expressed as functions of ~c andfc002 ¼ ð1� eccÞ~cð1� ~cÞ. This leads in particular to

c ¼ 1
If 1

~cð1� ~cÞecc ð15Þ

where If1 is a constant integral quantity defined as

If 1 ¼
Z 1�

0þ
cð1� cÞ~f dc ¼ I1 � I2 ð16Þ

where the integral defines the quantities I1 and I2.
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