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a b s t r a c t

We derive adjoint equations for the reactive compressible Navier–Stokes equations. Therein the reaction
rate is modelled by an Arrhenius approach. The adjoint equations are validated by means of a comparison
between the adjoint solution and a finite difference expression. An adjoint based optimisation framework
for reactive compressible flows is presented. Formulations for different target functions are shown. One-
and two-dimensional laminar flame configurations are presented. We find, that the adjoint approach
works well despite the strong non-linearity of the reaction terms.

� 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

Adjoint equations have attracted great attention during the last
years in the field of numerical fluid dynamics, as they directly pro-
vide the optimal change of a flow configuration for obtaining a
desired goal. An example is the classical aerodynamic design goal
of the optimal shape of a body in a flow to get a high lift/drag ratio
[1]. Also for active flow control [2], sensitivity analysis [3] and
model reduction problems [4,5] they have become a vital tool.
Thus, a large variety of methods will be available if the adjoint
approach can also be applied to reactive flows.

In particular the adjoint equations provide a locally optimal
improvement step, which is a great advantage over a try and error
approach. The improvement step is in principle restricted to be
small, because the adjoint formalism involves the linearisation of
the fully non-linear flow equations [6]. Due to this the adjoint
equations have to be re-evaluated after every improvement step.
Thus the confidence range of the linearisation is crucial. For non-
reactive flows this seems to be a small issue in practice.

Reactive flows are described by the transport of species and
reaction rates, which reduce reactants and increase products
(exhausts) and heat. The reaction rate itself strongly depends on
the temperature. It is often described by an Arrhenius approach,
which involves an exponential temperature dependence.

In principle the adjoint equations for reactive flows can be
derived in the same manner as for non-reactive flows. However, as
one has to linearise the equations, one has to linearise an

exponential and stiff temperature dependence. One might expect,
that the confidence range of the linearisation is much smaller due
to the exponential term and becomes such a strong restriction as
to render the adjoint approach useless. This might explain why the
adjoint approach is rarely applied to compressible reactive flows.
To the authors knowledge the closest to the present work is [7,8].

We derive instationary reactive adjoint equations analytically in
order to be able to trace all resulting terms. The focus is the anal-
ysis of the exponential term. Other terms are simplified to keep the
resulting equations as simple as possible in this study. Therefore
we neglect the friction. The heat capacities, the species and heat
transport are assumed to be constant. Inclusion of this terms is
not difficult in principle and was done for non-reactive flows
before. The analytical adjoint approach instead of the automated
differencing is known to introduce a mild discrepancy between
the simulation and its adjoint on the discrete level [9]. But for
the sake of clarity it seems to be the appropriate choice here.

We find that the adjoint framework works well for the analysed
laminar reactive flows. The stiff non-linear reaction rate does not
pose a big problem in contrast to our first expectations.

The current work differs in essential points from [7,8]. The
authors make use of an automated tool to create discrete adjoint
equations, and focus on uncertainty quantification of stationary
flows. Most importantly in our view, they use a turbulent flamelet
approach, which reduces the stiffness of the equations. Our final
aim are unsteady simulations with strong pressure fluctuations
and a corresponding adjoint based optimisation framework. We
therefore prefer to include the chemical mechanism instead of a
flamelet approach.

The paper is structured as follows: Section 2 describes the
governing equations and the applied simplifications. In Section 3,
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the corresponding adjoint equations are derived and an adjoint
based framework is presented. In Section 4, test cases and a
detailed analysis of the adjoint compressible reactive Navier–
Stokes equations are presented. In Appendix A, the full expansion
of the adjoint equations for one- and two-dimensional reactive
flow configurations can be found.

2. Governing equations

2.1. Reactive compressible Navier–Stokes equations

The reactive compressible Navier–Stokes equations are given by

@t.þ @a .uað Þ ¼ 0 ð1aÞ

@t.ub þ @xa .uaub þ pdab

� �
¼ @xasab ð1bÞ

@t.es þ @xa ua.es þ puað Þ � ua@xa pþ
XN

k¼1

Dho
f ;k

_xk

¼ sab@xa ua þ @xa k@xa Tð Þ ð1cÞ

@t.Yk þ @xa.uaYk � _xk ¼ @xa .Dk
Wk

W
@xa Xk

� �
: ð1dÞ

Therein . denotes the density, ua the velocity in direction a;p the
pressure, es the energy (sensible), W the mean molecular weight,
Yk the mass fraction of species k of N and Xk the mole fraction.
We applied Fick’s law for diffusion. k and Dk are the heat and species
diffusion coefficients. The viscous stress tensor is defined by
sab ¼ lð@xa ub þ @xb

uaÞ þ ðld � 2=3lÞdab@xc uc, where l is the shear
viscosity and ld the bulk viscosity. Dho

f ;k corresponds to the mass
formation enthalpy and _xk to the reaction rate, which is modelled
by an Arrhenius approach

_xk ¼WkmkAe
�Ta

Tð ÞYN

l¼1

Xl½ �m
0
l : ð2Þ

Wk denotes the molecular weight and mk the molar stoichiometric
coefficients of species k;A the pre-exponential factor, T the temper-
ature, Ta the activation temperature and Xl½ � the molar concentra-
tion of species l. Reverse rates are neglected since a forward
dominant reaction will be considered. The nomenclature is based
on [10]. The heat release _xT is given by �

PN
k¼1Dho

f ;k
_xk. The equation

system is closed with the ideal gas law. The summation convention
applies.

2.2. Model assumptions

To keep the derivation of the adjoint equations as transparent
as possible, we make some simplifications to the governing
equations. By reducing the number of terms and dependencies also
the adjoint equations are simplified. We assume, that the main dif-
ficulty is the exponential term, so we will focus on this. The
neglected terms can be added and should not pose any difficulty,
as these terms are accounted for in non-reactive adjoint analysis.

In laminar flames, which are treated in this study, the viscous
friction can be neglected in comparison to the heat- and species
diffusion. Therefore the corresponding terms are neglected in the
considered set of equations.

By assuming that the specific heat capacity is cv – cv ðTÞ the
energy equation Eq. (1c) can be rewritten in terms of pressure.

es ¼
Z T

T0

cvdT � RT0

W
¼ cv T � T0ð Þ � RT0

W
¼ cv

pW
.R
� cpT0

¼ p
.

1
c� 1

� cpT0 ð3Þ

The constant term cpT0 can be eliminated by conservation of mass.
The energy equation becomes:

@t
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� ua@xa pþ

XN
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_xk ¼ @xa k@xa Tð Þ: ð4Þ

For further simplification constant heat and species diffusion
coefficients k ¼ k0Tn

ref ¼ k̂ and .Dk ¼ D0;kTn
ref ¼ D̂k are assumed.

In addition, only premixed flames with one step chemistry are
considered. Therefore only one species is modelled. The mean
molecular weight is simply given by W ¼Wk. The species trans-
port equation becomes:

@t.Y þ @xa.uaY � _x ¼ @xa .D@xa Yð Þ: ð5Þ

While only premixed flames are analysed in this work the deriva-
tion of the adjoint equations is done for multi species k P 1.

2.2.1. Resulting computational model
Overall the set of governing differential equations Eqs. (1a)–

(1d) can be rewritten with f as source term as
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which corresponds to

@taþ @xa ba þ Ca@xa c þ d ¼ @2
xa

eþ f : ð7Þ

The matrix Ca is given by Ca
ij ¼ �uadi;2þadj;2þa, with the Kronecker

delta di;j.

2.3. Numerical implementation

The discretisation in space is realised by finite difference
schemes of high order (4th and 6th). Lower-order schemes would
be equally applicable. The time discretisation is realised with an
explicit Runge–Kutta scheme of fourth order. Due to the fact that
both the direct and adjoint equations will have a similar structure,
the corresponding computations are discretised in the same
manner. Uniform grids are used.

For stability reasons the momentum equation Eq. (1b) is imple-
mented in skew symmetric form [11]

1
2
@t. � þ.@t �ð Þua þ

1
2
@xb ub. � þub.@xb �
� �

ua þ @xa p ¼ 0: ð8Þ

More standard schemes would be applicable too. Further stabilisa-
tion of the computations, mainly for the adjoint equations, is
achieved by using implicit filtering [12].

3. Adjoint equations

3.1. General considerations

To guide the reader through the following derivation, the neces-
sary steps are first sketched on an abstract level. Therefore a
matrix–vector notation is used. The vector space is the full solution
in space and time. The derivation closely follows [6].

While the Navier–Stokes equations describe physical phenom-
ena of flows, the corresponding adjoint equations are implied by
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