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a b s t r a c t

Computational flame diagnostics (CFLDs) are systematic tools to extract important information from
simulated flames, particularly when detailed chemical kinetic mechanisms are involved. The results of
CFLD can be employed for various purposes, e.g. to simplify detailed chemical kinetics for more efficient
flame simulations, and to explain flame behaviors associated with complex chemical kinetics. In the pres-
ent study, the utility of a recently developed method of chemical explosive mode analysis (CEMA) for
CFLD will be demonstrated with a variety of flames for n-heptane including auto-ignition, ignition and
extinction in steady state perfectly stirred reactors (PSRs) and laminar premixed flames. CEMA was
further utilized for analyses and visualization of a direct numerical simulation (DNS) dataset for a 2-D
n-heptane–air flame under homogeneous charge compression ignition (HCCI) conditions. CEMA was
found to be a versatile method for systematic detection of many critical flame features including ignition,
extinction, premixed flame fronts, and flame stabilization mechanisms. The effects of cool flame chemis-
try for n-heptane on ignition, extinction and flame stability were also investigated with CEMA.

� 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

The coupling of detailed chemical kinetics with turbulence is
important for high-fidelity combustion simulations, e.g. large eddy
simulations (LESs) and direct numerical simulations (DNSs), be-
cause it can provide accurate detailed descriptions of complex tur-
bulence-chemistry interactions. In particular, the virtue of DNS is
that it resolves the Navier–Stokes equations fully down to the
Kolmogorov length scale, thus can provide accurate and rich infor-
mation regarding the chemical and transport processes in turbu-
lent flames for solving many energy related problems: e.g. fuel
efficiency, pollutant emissions and fire safety. Detailed chemical
kinetic mechanisms, however, consist of a large number of species
and elementary reactions. As such, it is still prohibitive to directly
apply them in multi-dimensional high-fidelity combustion simula-
tions due to the high computational cost. Mechanism reduction is
therefore necessary to accommodate the large mechanisms in
large scale combustion simulations.

Computational flame diagnostics (CFLDs) is an integral compo-
nent for mechanism reduction because it can be used for analyzing
detailed mechanisms thoroughly prior to the reduction. There have
been a variety of methods developed for mechanism reduction
through skeletal reduction by eliminating unimportant species

and reactions from detailed mechanisms [1–7], and timescale-
based reduction such as quasi steady state approximations (QSSAs)
[8–15], rate controlled constrained equilibrium (RCCE) [16], low-
dimensional manifold (ILDM) [17] and computational singular per-
turbation (CSP) [18–20]. Mechanism reduction is also achieved
through tabulation methods such as in situ adaptive tabulation
(ISAT) [21], pre-image curves [22], and piecewise reusable imple-
mentation of solution mapping (PRISM) [23], and optimization
based methods such as that in [24].

Many of these methods are efficient if the mechanisms are
small or moderately large. However, the reduction can become dif-
ficult for large hydrocarbons that may consist of hundreds or thou-
sands of species [25–28]. In such cases, extremely high efficiency is
required for the reduction. The method of direct relation graph
(DRG) [5,29–31] is a linear-time method that is suitable for skeletal
reduction of extremely large mechanisms. DRG has been extended
to take advantage of error propagation (DRGEP) [3,6,32–34] and
was combined with sensitivity analysis in DRG aided sensitivity
analysis (DRGASA) [31,35–37] and DRGEP with sensitivity analysis
(DRGEPSA) [3]. A path flux analysis (PFA) was recently developed
to consider species couplings through the creation and consump-
tion of a species respectively [7], and the diffusion effect was con-
sidered in a transport flux based DRG [38]. Due to their low
computational cost, the DRG based methods have also been em-
ployed for adaptive reduction [32,33,38].

A suite of algorithms with DRG as the first step were recently
developed to systematically derive reduced mechanisms suitable

0010-2180/$ - see front matter � 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.combustflame.2012.05.012

⇑ Corresponding author.
E-mail address: tlu@engr.uconn.edu (T. Lu).

Combustion and Flame 159 (2012) 3119–3127

Contents lists available at SciVerse ScienceDirect

Combustion and Flame

journal homepage: www.elsevier .com/locate /combustflame

http://dx.doi.org/10.1016/j.combustflame.2012.05.012
mailto:tlu@engr.uconn.edu
http://dx.doi.org/10.1016/j.combustflame.2012.05.012
http://www.sciencedirect.com/science/journal/00102180
http://www.elsevier.com/locate/combustflame


for DNS [39], which are highly demanding in terms of the effi-
ciency, accuracy and robustness of the reduced mechanisms. Algo-
rithms based on analytic computing, such as graph theory and
analytic differentiation, were extensively involved in these meth-
ods as outlined in [39]. Procedurally, unimportant species and
reactions were first eliminated using DRG and DRGASA from the
detailed mechanisms; correlated isomers are then lumped to re-
duce the number of transported variables [40]; quasi steady state
(QSS) species are systematically identified using an algorithm
based on CSP [11] and the algebraic equations for QSS approxima-
tions (QSSAs) are solved analytically based on graph theory [41].
Diffusive species are then bundled for the mixture-averaged trans-
port model [42] such that the computational cost for diffusion
coefficient evaluation can be mostly eliminated. Chemical stiffness
is removed ultimately on-the-fly [43] such that the low-cost expli-
cit integration solvers, such as the explicit 4th order Runge–Kutta
method in [44], can be adopted in DNS instead of the substantially
more expensive implicit solvers. Consequently, the cost of DNS be-
comes linearly proportional to the number of species in contrast to
the quadratic or cubic dependence in flame simulations with im-
plicit solvers [43,45]. Realistic chemistry for practical fuels, e.g.
methane, ethylene [35,46–48], n-heptane [43,45], and iso-octane,
therefore became affordable for DNS.

Although large scale flame simulations can now be routinely
performed with reduced mechanisms of practical fuels, new
challenges emerge because of the large datasets generated by the
simulations. One of the challenges is caused by the complex chem-
ical kinetic couplings in detailed chemistry, particularly those for
large hydrocarbons involving cool flame chemistry that is impor-
tant at low temperatures. Due to the negative temperature coeffi-
cient (NTC) behavior associated with cool flame chemistry, the
flame behavior can become rather complex at near limit condi-
tions. Another challenge is associated with the large datasets
generated in flame simulations with detailed chemistry. For
example, a recent 3-D DNS of a laboratory-scale lifted ethylene
jet flame simulated with a 22-species reduced mechanism at
Sandia National Laboratories generated 240TB of field data and
50TB of particle data [46]. Such massive datasets defy almost any
currently available methods for DNS data mining that depend on
empirical selection of criteria requiring human interactions, and
resulted in a need for CFLD to systematically extract salient infor-
mation from the datasets.

In response to this need, a method of chemical explosive mode
analysis (CEMA) [45,49,50] was recently developed to systemati-
cally detect important flame features, e.g. ignition, extinction, pre-
mixed flame fronts and diffusion flame kernels, from simulated
results at general flame conditions. As a utility for CFLD, the devel-
opment of CEMA has benefited from many ideas in mechanism
reduction, particularly the timescale analyses based on CSP. In con-
trast to the methods based on timescale analyses for the overall
flame behavior that involve both chemistry and transport, CEMA
is focused on the diagnostics on the chemical properties of the
mixtures, and was primarily based on eigen-analysis of the
Jacobian for the chemical source term in the governing equations.
As such CEMA is simple and efficient to perform while it was found
to be advantageous in limit phenomena detection compared with
conventional methods based on temperature or a species
concentration.

In the following, the utility of CEMA for CFLD will be reviewed
and demonstrated with realistic fuel chemistry for n-heptane in a
variety of flame configurations.

2. Formulation of CEMA

For a general chemically reacting system, the discretized con-
servation equations can be expressed in the following form

Dy
Dt
¼ gðyÞ � xðyÞ þ sðyÞ; ð1Þ

where y is the vector of the dependent variables including species
concentrations and other state variables. In CEMA, temperature
and species mole concentrations are included in y. Note that the
same quantity at different grid points is corresponding to different
entries in y. D/Dt is the material derivative. x is the chemical source
term, and s is the mixing term. For spatially homogeneous systems
such as perfectly stirred reactors (PSRs), the material derivative be-
comes the total derivative and s is the homogeneous mixing term.
The Jacobian of the RHS of Eq. (1) is therefore comprised of the con-
tributions from the chemical source term and the mixing term,
respectively:

Jg ¼
@gðyÞ
@y

¼ Jx þ Js; Jx ¼
@xðyÞ
@y

; Js ¼
@sðyÞ
@y

: ð2Þ

Embedded with rich information of the system, the full Jacobian Jg

is important for the analyses of the system dynamics, e.g. flame sta-
bility [51–55]. Similarly, chemical information of the local mixture
is embedded in the chemical Jacobian, Jx, which is useful to deter-
mine the chemical properties of the mixtures, e.g. for mechanism
reduction with intrinsic low dimensional manifold (ILDM) [17,56],
computational singular perturbation (CSP) [4,18–20], and quasi
steady state (QSS) species identification [11,14,15,57]. In CEMA,
the chemical Jacobian is utilized to systematically detect critical
flame features that are associated with drastic spatial and/or tem-
poral changes in chemical properties [45,49,50]. It is noted that
the chemical Jacobian is a block diagonal matrix because the chem-
ical source term only directly depends on the local species concen-
trations and thermodynamic variables. Therefore the analyses of
the chemical Jacobian can be performed independently on different
grid points, i.e., the size of the chemical Jacobian at each grid point
is (K + 1) by (K + 1), where K is the number of species, while the
large Jacobian involving all the variables at all grid points is not
needed in CEMA.

For simplicity, we shall refer the chemical Jacobian in the pres-
ent work to the specific block in Jx that is corresponding to a local
grid point of interest. Furthermore, Eq. (1) is assumed to be formu-
lated in species concentrations, and the constant volume heat
capacity of the mixture is treated as a constant for simplicity. In
terms of accuracy, this assumption has little effect on the eigen-
value and eigenvector of the CEM. However, if the heat capacity
is assumed a constant, there is a conservative mode with zero
eigenvalue associated with energy conservation in addition to
the M conservative modes associated with element conservations,
where M is the number of participating elements. Without this
assumption, the eigenvalue for the energy conservation mode is
small but nontrivial, thus can induce numerical difficulty in distin-
guishing the CEM from the energy conservation mode near the
zero-crossings of CEM. Therefore, the chemical Jacobian in the
present work always involves M + 1 conservative modes that can
be readily identified and excluded in CEMA, and the real parts of
the remaining eigenvalues are assumed to be sorted in descending
order without loss of generality. It is then defined that ke is the first
and ki the ith remaining eigenvalue. The eigenmode associated
with ke is defined as a chemical explosive mode (CEM) if

ReðkeÞ > 0; ke ¼ beJxae ð3Þ

where be and ae are the left and the right eigenvectors, respectively,
associated with ke. The existence of a CEM indicates the propensity
of a local mixture to auto-ignite if it is put in an isolated environ-
ment (adiabatic, constant volume). It was further found that the
transition of a CEM from explosive, i.e. Re(ke) > 0, to non-explosive,
i.e. Re(ke) < 0, is strongly correlated to critical flame features such as
ignition, extinction, and premixed flame front locations [49,50].
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