
Journal of Manufacturing Systems 40 (2016) 2–7

Contents lists available at ScienceDirect

Journal of Manufacturing Systems

j ourna l ho me pa g e: www.elsev ier .com/ locate / jmansys

An effective heuristic for no-wait flow shop production
to minimize makespan

Honghan Ye1, Wei Li1,∗, Enming Miao2

1 University of Kentucky, Lexington, KY, USA
2 Hefei University of Technology, Hefei, China

a r t i c l e i n f o

Article history:
Received 1 December 2015
Received in revised form 9 March 2016
Accepted 21 March 2016
Available online 21 May 2016

Keywords:
Makespan minimization
No-wait flow shop
Heuristics
Computational complexity

a b s t r a c t

In no-wait flow shop production, each job must be processed without any interruption from its start
time on the first machine to its completion time on the last machine. To minimize makespan in no-wait
flow shop production is one of the main concerns in industry. In this paper, we propose an average
departure time (ADT) heuristic for minimizing makespan in no-wait flow shop production. Based on the
computational experiment with a large number of instances of various sizes, the ADT heuristic performs
better than three existing best-known heuristics in the same computational complexity environment.

© 2016 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

1. Introduction

No-wait flow shop production is an important production mode
in many manufacturing systems such as petrochemical processing
[1], steel rolling [2], and plastic molding [3]. For no-wait flow shop
scheduling, the orders of n jobs processed on m machines are the
same, and all jobs are available to start at time zero. Furthermore,
each job must be processed continuously from the start to the end,
i.e., no waiting time allowed on intermediate machines from the
first machine to the last. Consequently, the start time on the first
machine could be postponed to avoid waiting time on any inter-
mediate machine. Take food processing as an example; the quality
of food will change as time goes by. Therefore, there should be no
waiting between operations during the processing; otherwise the
quality of food will be jeopardized, even causing safety issues. For
more details about applications of no-wait flow shop production,
please refer to Hall and Sriskandarajah [4].

To minimize maximum completion time or makespan, min
(Cmax), is one of the most meaningful objectives for no-wait flow
shop production [5]. Makespan is the completion time of the last
job on the last machine. There are also several other objectives
commonly used to optimize the performance of no-wait flow shop
production, such as to minimize total completion time [6], to min-
imize weighted mean completion time [7], and to minimize total
tardiness [8].

∗ Corresponding author.
E-mail address: wei.mike.li@uky.edu (W. Li).

To minimize Cmax is NP-hard for no-wait flow shop produc-
tion when the number of machines is larger than 2 [9]. Due to the
NP-hardness of no-wait flow shop production to min (Cmax), it is
extremely time consuming for exact algorithms to seek optimal
solutions, even for moderate-scale problems [10]. Therefore, it is
practical to use heuristics to seek optimal or near-optimal solutions
in a reasonable time, especially for large-scale production problems
in industry.

The NEH heuristic [11] has been widely regarded as the best
constructive heuristic for permutation flow shop production to
min (Cmax) [12] and also has been applied in no-wait flow shop
scheduling [13]. The NEH heuristic initially sequences jobs in a
non-ascending order by the sum of processing times of a job on
all machines. The first two jobs are then selected from the initial
sequence, and the partial sequence of these two jobs is fixed by
the one with better makespan. The remaining unsequenced jobs,
each in turn in the order of the initial sequence, are used to cre-
ate a set of temporary sequences by inserting each job one-by-one
at each position in the current sequence and calculating its Cmax.
The temporary sequence whose job position has the minimum
Cmax is selected, the job positions are then frozen as the current
sequence, and the next job in the initial sequence is examined. A
final sequence is generated until all jobs are sequenced.

Gangadharan and Rajendran [14] proposed their GR heuristic
for n-job m-machine no-wait flow shop production to min (Cmax).
Given processing times of job j on machine i, pj,i, where j = 1, . . ., n,
and i = 1, . . ., m, we can calculate the sum of processing times of
job j on all machines by Tj =∑m

i=1pj,i, and an index for job j by
Pj = (

∑m
i=1j × pj,i)/Tj . The GR heuristic has three steps to construct

http://dx.doi.org/10.1016/j.jmsy.2016.05.001
0278-6125/© 2016 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.jmsy.2016.05.001
http://www.sciencedirect.com/science/journal/02786125
http://www.elsevier.com/locate/jmansys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmsy.2016.05.001&domain=pdf
mailto:wei.mike.li@uky.edu
dx.doi.org/10.1016/j.jmsy.2016.05.001

H. Ye et al. / Journal of Manufacturing Systems 40 (2016) 2–7 3

a sequence. First, the GR heuristic groups all jobs into two sets {A}
and {B}, where set {A} consists of jobs whose Pj ≥ (1 + m)/2 and set
{B} consists of jobs whose Pj < (1 + m)/2. Second, the GR heuristic
generates an initial sequence by sequencing jobs in set {A} in a
non-descending order according to Tj and for jobs in set {B} in a
non-ascending order. An initial sequence can be [A′B′], where [A′]
is the partial sequence for set {A}, and [B′] for set {B}. Third, the
GR heuristic generates a final sequence by an insertion scheme,
in which an index is set for the kth job in the initial sequence
[A′B′], k = 1, . . ., n; the kth job is removed from and inserted into
the rest n − 1 positions of the sequence [A′B′]; the initial sequence
is updated if improvement of makespan is found through the
insertion, and such procedure continues until k = n. Rajendran [15]
proposed the RAJ heuristic for n-job m-machine no-wait flow shop
production to min (Cmax). The RAJ heuristic groups all jobs into
two sets and generates an initial sequence in the same way as the
GR heuristic, except sequencing jobs in each set according to that
Tj =∑m

i=1(m − j + 1)pj,i, and uses a different insertion scheme to
generate the final sequence. The RAJ heuristic uses two indexes.
The index k is for the kth job in the initial sequence, and h for the
number of jobs in a temporary sequence. Initially the temporary
sequence is empty. The RAJ initially selects the first two jobs from
the initial sequence, and the temporary sequence of these two jobs
is fixed by the one with the better makespan. Currently, there are
two (h = 2) jobs in the temporary sequence. As k changes from 3 to
n, the kth job in the initial sequence is inserted into the (h + 1)/2
to h + 1 positions in the temporary sequence, where �·� is the floor
function. For example, if h = 2, then (h + 1)/2 = 1.5, and (h + 1)/2 =1.
As k increases from 3 to n, h increases from 3 to n as well, and the
final sequence is constructed through the insertion scheme of the
RAJ heuristic. According to the results of case studies [14,15], the
GR and RAJ heuristics perform better on makespan minimization
than the heuristics proposed by Bonney and Gundry [16] and King
and Spachis [17].

Some heuristics in the literature can get better makespan than
the GR or RAJ heuristics for no-wait flow shop scheduling, but have
a longer computation time. Aldowaisan and Allahverdi [18] pro-
posed an AA insertion scheme to improve the performance of the
final sequence, which has a number of iterations much more than
the insertion scheme in the GR, RAJ, or NEH heuristics. Such AA
insertion scheme was applied to the genetic algorithm (GA) heuris-
tic [19], and the simulated annealing (SA) heuristic [20]. Both the GA
and SA heuristics perform better than the GR or RAJ heuristic, but
take a much longer computation time. For a 600-job 160-machine
instance, it took 3265.4 s of CPU time for the SA heuristic to generate
a solution on a computer with a 2.0-GHz CPU and 256 M RAM [5].
Moreover, Laha and Chakraborty [21] proposed a heuristic, whose
performance on min (Cmax) is better than the GR heuristic for large-
scale instances, but worse in 40% of small scale instances, where the
number of jobs is 6, 7, or 8.

In this paper, we propose an average departure time (ADT)
heuristic for no-wait flow shop production to min (Cmax), and com-
pare it with the GR, RAJ and NEH heuristics. The remainder of this
paper is organized as follows. Section 2 provides necessary nota-
tions in the analysis and describes the problem of no-wait flow shop
production. Section 3 presents our ADT heuristic. Section 4 presents
the results of case studies and analysis. Section 5 draws conclusion
and proposes future work.

2. Problem description

The following notations are used in problem description and
formulation.

� a sequence of n jobs, � = [J1, J2, . . ., Jj−1, Jj, . . ., Jn];
n the number of jobs;
m the number of machines;
pj,i the processing time of job j on machine i, where j = 1, . . ., n

and i = 1, . . ., m;
STj,i the start time of job j on machine i;
CTj,i the completion time of job j on machine i;
di

j−1,j
the potential distance between completion time of job j-1
and start time of job j on machine i;

Dj−1,j the distance between two adjacent jobs’ completion times
on the last machine.

The calculation of Cmax for no-wait flow shop production will be
illustrated as follows. First we assume the start time of job j on the
first machine equals to the completion time of job j − 1 on the last
machine as shown in Fig. 1(a) and Eq. (1). Meanwhile, there is no
waiting time on intermediate machines for each job. Accordingly,
the start time of job j on machine i and the completion time of job
j − 1 on machine i in Fig. 1(a) can be formulated by Eqs. (2) and (3).

Given initial conditions that CT0,m = 0, pj,0 = 0, p0,i = 0,
∑0

k=1pj,k,
and

∑m
k=m+1pj,k = 0

STj,1 = CTj−1,m where j = 1, 2, . . ., n (1)

STj,i = STj,1 +
i−1∑
k=1

pj,k where j = 1, 2, . . ., n and i = 1, 2, . . ., m

(2)

CTj,i = CTj,m −
m∑

k=i+1

pj,k where j = 1, 2, . . ., n and i = 1, 2, . . ., m

(3)

Fig. 1. Distance between two adjacent jobs.

Download English Version:

https://daneshyari.com/en/article/1697343

Download Persian Version:

https://daneshyari.com/article/1697343

Daneshyari.com

https://daneshyari.com/en/article/1697343
https://daneshyari.com/article/1697343
https://daneshyari.com

