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a  b  s  t  r  a  c  t

Production  planning  is  concerned  with  finding  a release  plan  of  jobs  into  a  manufacturing  system  so  that
its  actual  outputs  over  time  match  the customer  demand  with the least  cost.  For  a  given release  plan,  the
system  outputs,  work  in process  inventory  (WIP)  levels  and  job  completions,  are  non-stationary  bivariate
time  series  that  interact  with  time  series  representing  customer  demand,  resulting  in the  fulfillment/non-
fulfillment  of  demand  and  the  holding  cost  of  both  WIP  and  finished-goods  inventory.  The relationship
between  a  release  plan  and  its  resulting  performance  metrics  (typically,  mean/variance  of  the  total  cost
and the  fill rate)  has proven  difficult  to quantify.  This  work  develops  a metamodel-based  Monte  Carlo
simulation  (MCS)  method  to  accurately  capture  the  dynamic,  stochastic  behavior  of  a  manufacturing
system,  and  to  allow  real-time  evaluation  of a release  plan’s  performance  metrics.  This evaluation  capa-
bility is then  embedded  in a multi-objective  optimization  framework  to search  for  near-optimal  release
plans.  The  proposed  method  has  been  applied  to a  scaled-down  semiconductor  fabrication  system  to
demonstrate  the  quality  of  the  metamodel-based  MCS  evaluation  and  the  results  of  plan  optimization.

© 2015  The  Society  of  Manufacturing  Engineers.  Published  by  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

This work is concerned with production planning in manufac-
turing, which can be defined as the problem of finding a release
schedule of jobs into the manufacturing system so that the real-
ized outputs over time satisfy predetermined requirements as close
as possible [1]. The planning horizon of production activities usu-
ally ranges from several months to two years, and the frequency of
planning/replanning is weekly or monthly [2].

Typically, the planning horizon is divided into a number of dis-
crete periods, and the decision variables represent the quantities
of work of different types released into the system in each period.
The performance metrics to be optimized usually include (i) the
total cost (or profit), which may  consist of the holding cost for fin-
ished goods (FG) and work in process (WIP) inventories, production
costs and backordering costs and (ii) the fill rate, defined as the
percentage of immediately satisfied demand.

Optimizing the performance metrics with respect to (w.r.t.) the
release plan is challenging because it is notoriously difficult to
quantify the relationships between the performance metrics and
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the input decisions. A manufacturing system is subject to inher-
ent uncertainties such as probabilistic processing times, machine
failures, etc., leading to complicated input–output relationships as
discussed in Section 3. We  shall focus on three principal time series:
A(t), the number of jobs released for processing during period t,
Q(t), the number of jobs (i.e., WIP) in the system at the start of
period t, and D(t) the number of completed jobs departing from
the system during period t. Fig. 1 illustrates the input–output pro-
cess of a manufacturing system. The release process A(t), which
will usually vary over time, is determined by the decision variables
(the release plan). Given A(t), Q(t) and D(t) are non-stationary time
series describing the system’s outputs over time, whose evolution
also depends on the initial status of the system. The realized per-
formance metrics depend on Q(t), D(t), and the customer demand
D(t); the WIP  holding cost incurred is determined by Q(t); and the
FG holding cost and the fill rate by the departure process D(t) and
the customer demand D(t). In practice, demand is generally a non-
stationary time series, and is specified through forecasting efforts
exogenous to production planning.

Despite extensive research, it remains a challenge to adequately
quantify the relationship between the performance metrics and
the release schedule due to the complex interactions between the
non-stationary time series A(t), Q(t), D(t), and D(t). To address this
difficulty, this paper develops a metamodel-based Monte Carlo

http://dx.doi.org/10.1016/j.jmsy.2015.11.004
0278-6125/© 2015 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.jmsy.2015.11.004
http://www.sciencedirect.com/science/journal/02786125
http://www.elsevier.com/locate/jmansys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmsy.2015.11.004&domain=pdf
mailto:Feng.Yang@mail.wvu.edu
dx.doi.org/10.1016/j.jmsy.2015.11.004


M. Li et al. / Journal of Manufacturing Systems 38 (2016) 114–133 115

Manufacturing 

system: Q(t)

A(t) D(t) Finished 

good s 

Fig. 1. The input–output process of a manufacturing system.

simulation (MCS) method with the following features. First, for
a given release plan, it enables the evaluation of the probabilistic
measures of system performance including expectations (e.g., the
mean cost), variances (e.g., the variance of the cost) and probabili-
ties of interest (e.g., the fill rate). Second, it is able to accommodate
a wide variety of demand patterns. Third, it allows rapid evaluation
of a candidate plan in terms of its performance metrics, and permits
timely plan optimization.

The remainder of this paper is organized as follows. Section
2 provides a review of the related literature. Section 3 gives an
overview of the metamodel-based MCS  method for responsive
production planning. Section 4 details the input–output metamod-
eling of a manufacturing system, and the metamodel-based MCS  is
discussed in Section 5. Section 6 formulates the multi-objective
optimization problem for production planning, and presents the
optimization scheme that uses the MCS  method to quickly evaluate
each candidate plan. In Section 7, the plan optimization approach
is applied on a scaled-down semiconductor fabrication system. A
brief summary is given in Section 8.

2. Literature review

Production planning problems have been addressed by several
different streams of research, each emphasizing certain aspects of
the problem, and thus different mathematical models. A strong case
can be made [3] that none of these formulations addresses the prob-
lem faced in industry in its full complexity and generality. Hence
in practice the production planning function will often combine
several different mathematical models. In addition, it is possible
to formulate the production planning problem in different ways
depending on the time frame covered and the level of information
aggregation involved [4,5]. In this paper we shall focus on a limited
formulation, that of how to release work into a production system
over time in order to match its output with demand in some optimal
or near-optimal manner.

A central issue in matching production output to demand arises
from the presence of substantial cycle times in most production
systems. The cycle time is defined as the time elapsing between a
unit of work (a job) being released into a production system and its
emergence from the system as a finished product. In a practical pro-
duction system the cycle time of any given job is a random variable
whose distribution potentially depends on all uncertainties arising
in the production environment, such as behavior of human deci-
sion makers, process times, machine failures, and so on. Queueing
models [6,7], simulation models (e.g., [8,9]) and empirical observa-
tion are all in agreement that the distribution of the cycle time will
also depend on the average utilization of the production resources.
This creates a central difficulty for production planning systems:
in order to match output to demand, they need to consider cycle
times; but the distribution of the cycle time is determined to a
considerable degree by the resource utilization, which, in turn, is
determined by the release decisions made by the planning system.
Hence cycle times are endogenous to the release decisions made
by the planning system. However, cycle times are determined in
practice by complex interactions between several complex stochas-
tic processes evolving over time, such as the pattern of releases into
the system, customer demand, machine failures, and the arrival
of jobs at machines within the system over time. The difficulty
of a comprehensive analytical treatment of these interactions in

their entirety constitutes the central difficulty faced by production
planning.

Mathematical programming models have focused on the allo-
cation of limited resource capacity among different products over
time. Much of this work assumes all inputs are deterministic, lead-
ing to formulations as linear or mixed integer programs [10–14].
Most of these models, as well as the widely used Material Require-
ments Planning (MRP) approach [15–17] treat cycle times as an
exogenous parameter independent of resource utilization. These
models ignore the stochastic nature of the problem, requiring
enhancements to their solutions to be useful in practice, and also
ignore the relation between release decisions and cycle times. How-
ever, deterministic mathematical programming models have been
used extensively in industry as the basis for successful planning
systems [18,19]. These deterministic models have been extended
in several ways to incorporate uncertainty in both production and
demand. Several authors [20–23] have proposed scenario-based
stochastic programming models. The main difficulty with this
approach is the extremely rapid growth in the size of the models as
the number of decision epochs and random variables increases. A
variety of robust optimization approaches have been proposed, in
which one seeks a production plan that will provide a satisfactory
solution over a restricted set of uncertain outcomes [24,25]. Yet
another approach has been the use of chance constraints, where
constraints may  be violated with a specified probability [26,27].
These techniques tend to be computationally less demanding than
stochastic programming, but also represent uncertainty and its
consequences in different ways. Aouam and Uzsoy [28,29] compare
a number of these models in the context of a very simple single-
stage production-inventory system under stochastic demand, and
find that they need to be parameterized with care to yield desirable
results.

Another extension of mathematical programming models has
been in the direction of explicitly representing the dependence
between cycle times and planning decisions, making cycle times
endogenous to the planning models [30,31]. One such approach,
which is closely related to this work, is the use of nonlinear clear-
ing functions that represent the expected output of a production
resource during a planning period as a function of some measure
of its planned workload during that period. The planned work-
load, is usually computed from a set of state variables such as
the total amount of work available to the resource in the period
or the average work in process (WIP) level during the period.
The clearing function is usually assumed to be, and can in many
cases be shown to be, a concave nondecreasing function of the
state variables which admits of piecewise linearization, yielding
tractable optimization models. Simple clearing functions can be
derived from classical steady state queueing models (e.g., [32,33])
or transient queueing models [14,34,35]. In general, the form of
the clearing function will change from period to period based on
the values of the state variables used to estimate it. However most
models using clearing functions have assumed a time-stationary
function representing the expected performance of the system
over an appropriate range of operating conditions. Models using
clearing functions have shown considerable promise in extensive
computational experiments [33,36–38]. The work in this paper can
be viewed as a generalization of the clearing functions employed
to date, extending the number and nature of the state variables
considered and explicitly modeling the evolution of the clearing
function over time based on the evolution of the underlying state
variables.

While these approaches may  still be sufficient in many cases
to provide important insights, detailed discrete-event simulation
(DES) models appear to be the only methodology that permits the
detailed modeling of complex stochastic systems and their inter-
actions that typify production systems. However, DES comes with
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