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a  b  s  t  r  a  c  t

A  critical  challenge  in  multistage  process  monitoring  is  the  complex  relationships  between  quality  charac-
teristics  at different  stages.  A  popular  method  to deal  with  this  problem  is  regression  adjustment  in  which
each  quality  characteristic  is  regressed  on  its  preceding  quality  characteristics  and  the  resulting  residual
is monitored  to detect  changes  in  local variations.  However,  the  performance  of this  method  depends  on
the accuracy  of  the regression  coefficient  estimation.  One  source  of  the estimation  errors  is measurement
errors  which  commonly  exist  in  practice.  To  provide  guidance  on the  use  of regression-adjusted  monitor-
ing  methods,  this  study  investigates  the  effect  of  measurement  errors  on  the  bias  of  regression  estimation
theoretically  and  numerically.  Two  estimators,  the  ordinary  least  squares  (OLS)  estimator  and  the  total
least  squares  (TLS)  estimator,  are  compared,  and  insights  regarding  their  performance  are  obtained.

© 2014  The  Society  of  Manufacturing  Engineers.  Published  by Elsevier  Ltd.  All rights  reserved.

1. Introduction

Multistage manufacturing processes (MMPs) are becoming
increasingly common in today’s manufacturing arena [1]. Fig. 1
shows a typical example of such processes which consists of 11
stations and is capable of producing five different types of motor
reducers. A defining feature of MMPs  is that the outgoing product
quality at each single station is determined not only by various local
disturbances at that station such as thermal error, cutting-force
induced error, and machine geometric error, but also by the prop-
agated variations from upstream stations such as the datum error
due to preceding cutting operations. The general model of multi-
stage processes in quality monitoring is shown in Fig. 2, where each
node represents a quality characteristic (QC) measured at a cer-
tain stage. Due to the variation propagation in the process, these
QCs bear complex relationships. This poses significant challenges
for process monitoring because the conventional statistical moni-
toring methods are not able to differentiate local and propagated
variations and thus considerable amounts of false alarms could be
generated, i.e., the monitoring scheme may  mistake the propagated
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variation as local variation and then generate an alarm that is due
to other stages.

Many efforts have been made to conquer this problem by
making use of either the physical models of the processes [e.g.,
2–5] or statistical analysis of historical data [e.g., 6,7]. A popular
data-driven method for monitoring correlated QCs is the regres-
sion adjustment method [e.g., 8,9,10,11,12]. Basically, this method
monitors the residual, Zj = Qj − Q̂j , j = 1, . . .,  q, resulted when QC j
is regressed on all its preceding QCs instead of monitoring Qj itself.
Since the propagated variation, represented by the predictor Q̂j , is
removed, the residual will only contain the information on the local
variation of QC j, and thus if Zj is out of control, it means directly
that some local faults happened. The idea of regression adjustment
has been widely accepted as a simple and effective way  to deal with
multistage quality control problems and become the basis for many
further studies.

However, the performance of regression-adjusted monitoring
depends closely on the accuracy of coefficient estimation in the
regression between each QC and its preceding QCs. There are two
sources of estimation errors: sampling uncertainty due to limited
sample size and measurement errors in data collection. Shu et al.
[13–15] conduct a systematic study of the effects of the first type
of estimation error on the performance of regression-adjusted
monitoring. It is found that the estimation error will decrease
the in-control average run length and increase the out-of-control

http://dx.doi.org/10.1016/j.jmsy.2014.06.013
0278-6125/© 2014 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.jmsy.2014.06.013
http://www.sciencedirect.com/science/journal/02786125
http://www.elsevier.com/locate/jmansys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmsy.2014.06.013&domain=pdf
mailto:lzeng@uta.edu
dx.doi.org/10.1016/j.jmsy.2014.06.013


264 G. Ding, L. Zeng / Journal of Manufacturing Systems 36 (2015) 263–273

Fig. 1. An example of multistage processes.

average run length. Zeng and Zhou [16] consider the effects of
the second type of estimation error in the case of large samples.
They point out that the existence of measurement errors will cause
inaccurate estimation of the coefficients in the regression models
which eventually leads to increased false alarms and miss detec-
tions in regression-adjusted monitoring. It is worth mentioning
that the effects of measurement errors in regression-adjusted mon-
itoring have also been investigated by Li and Huang [17]. However,
their study assumes that a preliminary dataset not subject to mea-
surement errors is available from which accurate estimates of the
coefficients can be obtained. So their discussion is not on the effect
of estimation errors caused by measurement errors in regression-
adjusted monitoring.

Since measurement errors commonly exist in manufacturing
processes [18,19], it will be very useful to investigate the effects
of such errors in regression-adjusted monitoring. Essentially, this
means to study the estimation error caused by measurement errors.
In the study of Zeng and Zhou [16], not much detail on this is pro-
vided as the focus of that study is the effects of such estimation
errors on the performance of monitoring. To fill the gap, our study
concentrates on the effects of measurement errors in coefficient
estimation. Moreover, we  compare the performance of two popu-
lar estimation methods, ordinary least squares (OLS) and total least
squares (TLS), in the presence of measurement errors. The results
will provide intuitive insights on regression-adjusted process mon-
itoring as well as guidelines on its use in practice. It deserves to
point out that to be useful to real-world multistage processes, this
study uses an engineering model (a linear state space model) rather
than a general regression model as used in many other studies [e.g.,
13–15] to characterize the variation flow in the process, which is
popular in multistage process research [e.g., 20]. In addition, like
in [16], we assume large samples are available; in other words, we
are studying the large-sample properties of the estimators. This
is often the case in today’s manufacturing processes due to the
advancement of information/sensing technologies.

Specifically, our study aims to address two concerns on the effect
of measurement errors: (1) What is the effect of measurement
errors on the coefficient estimation and how is this effect affected
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Fig. 2. General model of multistage processes.

by important characteristics of multistage processes? These char-
acteristics include the relationships between QCs at different stages
and magnitudes of local variation sources and measurement errors
at each stage. (2) What are the advantages/disadvantages of the TLS
estimator compared to the OLS estimator, and under what condi-
tions it can be used to replace the OLS estimator in order to alleviate
the effect of measurement errors? Both theoretical analysis and
numerical study have been done to answer these questions.

The remainder of the paper is organized as follows. Section 2 will
give some background information, including the process model,
conventional procedure of regression-adjusted monitoring, review
of estimation methods in the presence of measurement errors, and
basics of the TLS method. Theoretical results on the OLS estimator
and the TLS estimator will be presented in Section 3. Section 4 gives
the results of a numerical study. Section 5 summarizes our findings
and discusses implications of the findings on multistage process
monitoring.

2. Background and basics

2.1. Process model in the presence of measurement errors

A linear state space model will be used in this study. Assume
there are q QCs distributed at n stages in a general multistage pro-
cess, as shown in Fig. 2. For j = 1, . . .,  q, define Pj = {1, 2, . . .,  p} as
the set of QCs in preceding stages of QC j. For example, in Fig. 2,
P5 = {1, 2, 3}, while Pq includes all the QCs except q. In this study,
we assume that QC j could only be influenced by QCs in Pj . Also, let
Uj be the local variation source of QC j. The local variation source
represents the quantities which are related to a specific QC and are
often not directly observable. They have different physical mean-
ings in different processes. For simplicity, we assume every QC in
the process has a different local variation source. A linear model is
assumed for Qj and Qi, i ∈ Pj

Qj =
∑
i ∈ Pj

ˇijQi + Uj (1)

where ˇij is the coefficient of Qi in the model of Qj. In the presence
of measurement errors, the observed quantities are (Y, X1, . . .,  Xp)
which satisfy

Y = Qj + e

Xi = Qi + εi, i = 1, . . .,  p
(2)

where Y is the observation of QC j, Xi is the observation of QC i, e is
the measurement error of QC j and εi is that of QC i. As in many stud-
ies on multistage process monitoring [e.g., 1], we  assume that all
the local variation sources and measurement errors follow normal
distribution, have zero mean and are independent of each other.

2.2. Regression-adjusted monitoring

In regression-adjusted monitoring, QC j, j = 1, . . .,  q, is monitored
using a univariate control chart to detect changes in its local vari-
ation, i.e., Uj. Following a standard procedure in SPC practice, the
monitoring scheme includes two  steps: In Phase I analysis, the rela-
tionship of QC j and its preceding QCs is estimated by the ordinary
least squares method

�̂
OLS = (X′X)−1X′Y (3)

where �̂
OLS =

[
ˆ̌

1j, ˆ̌
2j, . . ., ˆ̌

pj

]′
, and X = [X1, X2, . . .,  Xp]′. The

resulting residual is

Z = Y − X�̂
OLS
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