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a  b  s  t  r  a  c  t

The  appearance  of welds  is the external  manifestation  of  welding  quality.  The  morphology  of  molten
pools  is significantly  associated  with  the  weld  appearance,  but  the  approach  to  measure  the  morphology
of  molten  pools  during  laser welding  remains  an outstanding  challenge  up  to  now.  In  this  study,  the
shadows  of  molten  pools  were  formed  to describe  the morphology  of  molten  pools.  Principal  compo-
nents  analysis  (PCA)  is  applied  to  analyze  the  characteristics  of  the  molten  pools’  shadow  in order  to
reduce  their  redundancy.  Then  BP  neural  network  improved  by  genetic  algorithm  (GABP)  is established
to  model  the  relation  between  welding  appearance  and  the  characteristics  of  the  molten-pool-shadows.
The  effectiveness  of the  established  model  is analyzed  through  two  different  welding  speed  experiments,
and  the  results  verify  its  prediction  performance.  The  work  provides  an  effective  way  to predict  the  weld
appearance  and  assess  the  welding  quality  in  real-time.

©  2014  The  Society  of  Manufacturing  Engineers.  Published  by Elsevier  Ltd.  All rights  reserved.

1. Introduction

Laser welding is the most solicited technique for industrial
application for its advantages in narrowly focusing laser radiation
to a small area and high intensity heat source, which are instrumen-
tal in deep penetration and high-speed welding [1–3]. The inherent
flexibility of the laser welding is due to its ability to operate in
both the conduction mode for shallow penetration welding and the
keyhole mode in deep penetration welding [4,5]. However, with-
out a thorough physical understanding of the associated molten
pools phenomena, the potential of laser welding cannot be fully
excavated.

The morphology of the molten pools is the final outward man-
ifestation of the compositive force of the metal vapor pressure,
the surface tension, the gravity and the pressure of the shielding
gas during laser welding, and it plays an important role in deter-
mining the weld appearance. An impressive amount of researches
have been carried out to explain the behaviors of the molten pools.
Yamada et al. [6] used X-ray images of inside materials with intense
synchrotron radiation to observe the keyhole and defects of the
molten pools during laser welding, and the relation between the
shape of molten pools and welding quality was  studied, but the
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X-ray photograph system is expensive and harmful on operators’
health. Some researchers employed numerical simulation methods
to study the mechanism of the molten pools during laser weld-
ing [7–9]; these methods are highly depending on the accuracy of
the numerical simulation models. Zhang et al. [10] presented the
dynamic behaviors of spatter formation, and clarified the spatter
formation mechanisms in the high-power fiber laser welding of a
thick plate at low welding speed with high-speed imaging system,
but the phenomena and mechanisms of high speed laser welding
were not studied. Recently, Zhang and Gao [11] applied an auxiliary
diode laser illuminant to get the visual information of the molten
pools morphology, and studied the relation between these visual
information and the welding quality with fitting method.

Artificial neural networks have been used in a wide range of
membrane process applications and are particularly suited to prob-
lems which involve the manipulation of multiple parameters and
non-linear interpolation [12,13]. BP neural network is a typical
artificial neural network, which can implement any complex non-
linear mapping functions proved by mathematical theories, and
approximate arbitrary nonlinear functions with satisfactory accu-
racy. Compared with other forecast methods, BP neural network
is advantageous in terms of high tolerance of data errors. Suganthi
et al. [14] applied back propagation (BP)-based artificial neural net-
work (ANN) models for the prediction of multiple quality responses
in micro-EDM operations. Zhang et al. [15] developed an ANN
model combining learning vector quantization and BP algorithm
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to map  the complex relationship between process conditions and
quality indexes of low-pressure die-cast. Oktem [16] constructed
an ANN based on BP learning algorithm for the surface roughness
prediction. According to the learning algorithm of BP model, the
accuracy of the BP model is highly depending on the initial weights
and thresholds of the neural network. Therefore, the BP model
should be improved in order to get the global optimized param-
eters, not the local optimized parameter, of the neural network.

This paper continues our previous study [11], in which a high
speed visual sensing system with a specific wavelength auxil-
iary diode laser light was designed to illuminate molten pools
and casted its shadow. The high-speed camera (frame rate: 5000
frame/s) helps us to capture the detailed visual morphology infor-
mation of a molten pool. The area of a casting shadow (abbreviated
as A), maximal distance between points in the casting shadow
and the keyhole position (abbreviated as D), maximal width of the
casting shadow (abbreviated as W)  and tilt of the casting shadow
(abbreviated as T) were defined as the characteristics to describe
the morphology of a molten pool. In this study, the PCA algorithm
was applied to reduce the redundancy of the characteristics data of
the morphology information of the molten pool. A BP neural net-
work improved by genetic algorithm is studied to characterize the
nonlinear relation between these characteristics of molten-pool-
morphology and welding appearance which was represented by
the weld height and weld width. The established model is verified
by two different welding experiments, and the results show the
effectiveness and robustness of the established prediction model
of the weld appearance.

2. Experimental setup

The molten pools, spatters and plasma can be photographed and
observed by special vision systems during the high power laser
welding [10]. By analyzing the spectrum of the molten pools and
plasma, it is believed that the radiation of a molten pool mainly
covered the near infrared band, while the plasma radiation gath-
ered at the ultraviolet band. In order to get the clear images of
the molten pools’ shape, these interferences should be eliminated.
In our experiment, a diode laser light illuminant (wavelength:
980 nm,  25 W)  was equipped at the side of laser beam to illumi-
nate the molten pool, and a narrow-band filter with spectral band
of 960–990 nm was installed in front of the camera lens. The diode
laser illuminant was fixed at an angle of 45◦ with the workbench
plane, so the shadows of the molten pools would be casted on
the workpiece. The characteristics of the molten pools’ shadow
are defined and analyzed to get the information of the molten
pool morphology during laser welding. The type of the camera is
NAC high-speed CMOS camera (frame rate: 5000 frame/s, resolu-
tion: 512 × 500 pixels), and the laser welding source is high-power
disk laser TruDisk-10003 (power: 10 kW). The camera and laser-
welding beam are fixed on a Motorman 6-axis robot, which was
employed to find the exact welding position in welding process.
The diameter of the laser beam is 480 �m.  During the laser welding,
the robot which carried the camera and laser beam kept immobi-
lization, and the workpiece was moved back toward the welding
direction by the workbench. The structure of the experimental
setup is shown in Fig. 1.

3. Using principal components analysis (PCA) to analyze
the characteristic data

From the experimental setup, the frame rate of the camera used
to capture the molten pool shadow was 5000 frames/s; so large
quantities of images were recorded during laser welding. With each
recorded image, four characteristics of molten pools’ shadow were

Fig. 1. The structure of experimental setup.

extracted [11]. PCA is able to reduce the dimensionality of a data
set consisting of a large number of interrelated variables, while
retaining as much as possible of the variation in the data set. It is
achieved by transforming the original data to a new set of variables,
the principal components (PCs), which are uncorrelated, and which
are ordered so that the first few PCs retain most of the variation in
all of the original variables [17,18].

PCA is highly useful in analyzing data which contains relation-
ships between the existed variables. It is proved successfully in
many applications such as reducing dimensionality, data compres-
sion, and fault detection.

In PCA algorithm, the input vector X is defined as X = (x1, x2, . . .,
xn)T, which consists of the four characteristics. The four charac-
teristics are of different orders of magnitude, so normalizations of
each characteristic are required before applying PCA algorithm. The
mean value of all input vectors X is denoted by �X = E {X}, and the
correlation coefficient matrix R is calculated by Eq. (1).

RX = E{(X − �X )(X − �X )T }, RX =

⎛
⎜⎜⎜⎜⎜⎝

r11 r12 ... r1n

r21 r22 ... r2n

...
...

...
...

rn1 rn2 ... rnn

⎞
⎟⎟⎟⎟⎟⎠ (1)

The components of RX, denoted by rij, represent the covari-
ance between the components xi and xj, if xi and xj of the data
are uncorrelated, and the covariance matrix is symmetric. In gen-
eral, once the covariance matrix was  calculated, the eigenvectors
could be found from the covariance matrix easily. The next step is
to order them by their eigenvalues from largest to smallest. The
sequence shows the components in order of the significance of the
dimensions. Therefore the diagonal elements-eigenvectors of RX

are (�1,e1), (�2,e2), . . .,  (�p,en), where �1 ≥ �2 ≥ · · · ≥ �n.
Thus the principal components are calculated by Eq. (2).

Yi = e′
iX =

p∑
k=1

eikXk (2)

where Var(Yi) = e′
i

∑
ei = �i, i = 1, 2, ..., n; Cov(Yi, Yk) =

e′
i

∑
ek = 0, i /= k.

The first principal component which is a linear combination
of x1, x2, . . .,  xn, has the maximum variance, i.e., the Var(Y1) is
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