
Journal of Manufacturing Systems 37 (2015) 494–504

Contents lists available at ScienceDirect

Journal of Manufacturing Systems

j ourna l ho me pa g e: www.elsev ier .com/ locate / jmansys

Technical Paper

Pool segmentation for predicting water traps

Yusuke Yasuia, Sara McMainsa,∗, Thomas Glaub

a University of California, Berkeley, USA
b Daimler AG Research & Development, Stuttgart, Germany

a r t i c l e i n f o

Article history:
Received 8 July 2014
Accepted 14 July 2014
Available online 9 September 2014

Keywords:
Waterjet cleaning
Reeb graph
Water traps
Cleanability
Slicing
Segmentation
Computational geometry

a b s t r a c t

We propose a new method to detect water trap regions in voids of oriented polygonal models that
approximate the geometry of mechanical parts. Since water traps decrease cleaning and draining effi-
ciency, accurately predicting such regions allows re-orienting parts to reduce manufacturing time and
cost. We construct a directed graph that captures the flow of water in voids of a 3D input model, based on
a fast orientation-dependent volume segmentation approach. We can quickly find the water trap regions
by analyzing the directed graph. Since we take a purely geometric approach to solve this problem without
employing any physical simulation, even if the geometry of the voids is complicated, we can calculate
water traps quickly.

© 2014 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

1. Introduction

As the complexity and precision of mechanical parts and assem-
blies have increased, the possibility of in-service failures caused
by manufacturing-related hard particle contamination (such as
detached burrs and chips from machining) has increased consid-
erably. Reliably removing solid particle contaminants from the
surfaces of mechanical parts has become increasingly important in
the automotive industry. However, miniaturization and increased
geometric complexity has made it more difficult to access all the
surfaces of parts to remove contaminants.

In this paper, we consider a manufacturing planning problem
that arises when cleaning with high-pressure water jets. Water
jets are effective for removing contaminants from the surface
of mechanical parts, but the water may become trapped inside
the part if the geometry of voids is complex. Since contami-
nants may accumulate in such regions and trapped water must
be drained after the cleaning, finding an orientation that mini-
mizes the potential water trap regions is important to increase the
cleaning efficiency and reduce the draining time and effort after
cleaning.

We propose a new method to pre-identify the regions of
cleaning-incompatible water traps in voids of mechanical parts
using a geometric volume segmentation method, given the part

∗ Corresponding author. Tel.: +1 510 852 9359.
E-mail address: mcmains@me.berkeley.edu (S. McMains).

orientation. We assume that the part geometry is given as a 2-
manifold triangulated polygonal mesh and that the draining force
applied to the water is only the gravitational force.

2. Previous work

To increase the efficiency of cleaning processes, analytical
tools that predict cleaning effectiveness at the design and pro-
cess planning stages are needed. Initial research has focused on
understanding the effect of key cleaning process parameters [3,2].

Since simulating multiphase fluid flow using computational
fluid dynamics (CFD) can take hours to converge, some purely geo-
metric approaches have been proposed for manufacturing planning
with fluids. Bose and Toussaint proposed an algorithm to find an
orientation for a gravity casting mold that minimizes the number of
venting holes that need to be added to allow air to escape to insure a
complete fill [4]. Aloupis et al. solved a 2D rotational draining prob-
lem for a closed polygon and a trapped single particle inside of the
polygon, proposing an algorithm to find how many holes must be
punctured to “drain” the particle [1]. For industrial applications of
cleaning, on the other hand, we typically do not have the option of
modifying the part by adding venting or draining holes to eliminate
air or water traps. Yasui and McMains proposed an algorithm to test
whether a given rotation axis can fully drain a workpiece when the
workpiece is rotated around the axis [10]. The method we propose
in this paper is also purely geometric, avoiding the computationally
costly simulations of CFD.

http://dx.doi.org/10.1016/j.jmsy.2014.07.006
0278-6125/© 2014 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.jmsy.2014.07.006
http://www.sciencedirect.com/science/journal/02786125
http://www.elsevier.com/locate/jmansys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmsy.2014.07.006&domain=pdf
mailto:mcmains@me.berkeley.edu
dx.doi.org/10.1016/j.jmsy.2014.07.006

Y. Yasui et al. / Journal of Manufacturing Systems 37 (2015) 494–504 495

3. Algorithm overview

Our algorithm predicts regions in voids of the geometry where,
for a given orientation, the effectiveness of cleaning with water jets
will be compromised due to water traps. We assume throughout
this paper that the part geometry has been rotated to the desired
test orientation, so that gravity always acts vertically (i.e. down the
z-axis).

Fig. 1 illustrates an overview of our algorithm. Letting M be the
geometry of the input model and B be a slightly enlarged bound-
ing box that encloses M, the space W where water flows can be
represented as W = B \ M. We split the space W horizontally into
multiple regions called pools based on topological changes of W
with respect to the z-axis. Then, we build a directed graph whose
nodes correspond to the pools and whose edges connect two nodes
if water flowing out of the source node’s corresponding pool could
enter the destination node’s corresponding pool. We determine
water trap regions by analyzing the directed graph.

The directed graph we construct is mathematically equiva-
lent to a Reeb graph of a 3-manifold with boundary with respect
to the height function (z-value). Hence, we could construct the
directed graph from W using a Reeb graph construction algorithm
[8,9] and segment W into pools based on the Reeb graph con-
structed. However, since those Reeb graph construction approaches
require the extra burden of tetrahedralizing W, we propose an
alternative efficient approach of segmenting W into pools and con-
structing the corresponding directed graph simultaneously in our
work.

3.1. Preliminaries

We introduce some notation that we will use to explain how
we split W into pools and add the directed edges between nodes
corresponding to pools. We consider a sweep plane psweep(z) per-
pendicular to the z-axis (i.e. the gravity direction) intersecting it at
z. Given a sweep plane psweep(z), we define the slice at z, S(z), as the
intersection of W and psweep(z): S(z) = W ∩ psweep(z). As shown in
Fig. 1(d), slice S(z) may consist of multiple disconnected slice com-
ponents, which in 3D will be 2D polygons (possibly with holes).
We call these slice polygons. We denote the different slice polygon
constituting S(z) as si(z) (1 ≤ i ≤ |S(z)|).

Then, we let proj(si(z)) be the projection of si(z) to the plane per-
pendicular to the z-axis, and the z-value just below z be z− = z − �.
We let the z-value just above z be z+ = z + �, � a positive infinitesimal
number. Given a slice polygon si(z) ∈ S(z), we define overlapping
slice polygon(s) just below si(z), Sbelow(si(z)), as the set of slice
polygons sj(z−) ∈ S(z−) such that proj(si(z))∩ proj(sj(z−)) /= ∅. Sim-
ilarly, we define overlapping slice polygon(s) just above si(z),
Sabove(si(z)), as the set of slice polygons sj(z+) ∈ S(z+) such that
proj(si(z))∩ proj(sj(z+)) /= ∅.

Based on the cardinality of Sbelow(si(z)) and Sabove(si(z)), the slice
polygons just below and above si(z), we classify each slice polygon
si(z) as one of four types as follows. Given a slice polygon si(z), if
|Sbelow(si(z))| = 0, we call si(z) a beginning slice polygon since a new
slice polygon appears as the sweep plane moves from psweep(z−) to
psweep(z+). On the other hand, if |Sabove(si(z))| = 0, we call si(z) an end-
ing slice polygon, since an existing slice polygon disappears as the
sweep plane moves from psweep(z−) to psweep(z+). If |Sbelow(si(z))| ≥ 2
and |Sabove(si(z))| ≥ 1, or if |Sbelow(si(z))| ≥ 1 and |Sabove(si(z))| ≥ 2, we
call si(z) a merge/split slice polygon since multiple slice polygons
merge into one slice polygon and/or one slice polygon splits into
multiple slice polygons as the sweep plane moves from psweep(z−)
to psweep(z+). Finally, if |Sbelow(si(z))| = |Sabove(si(z))| = 1, we call si(z) a
no-change slice polygon, since no topological change of slice polygon
si(z) occurs as the sweep plane moves from psweep(z−) to psweep(z+).

3.2. Pool segmentation overview

We define a pool as the union of no-change slice polygons
bounded by either a beginning or a merge/split slice polygon from
below and either an ending or a merge/split slice polygon from
above. Given a slice polygon si(z), we let pool(si(z)) be the pool si(z)
defines.

We segment W into pools using a sweep plane algorithm,
where we imagine moving psweep(z) from z =− ∞ to z =+ ∞. If
W ∩ psweep(z) yields a beginning slice polygon, we generate a new
pool bounded from below by the beginning slice polygon. If W ∩
psweep(z) yields a no-change slice polygon, the no-change slice poly-
gon si(z) defines the pool pool(sj(z−)) where sj(z−) ∈ Sbelow(si(z)).
If W ∩ psweep(z) yields an ending slice polygon, we complete the
corresponding existing pool, bounding it from above with the end-
ing slice polygon. Finally, if W ∩ psweep(z) yields a merge/split slice
polygon, we complete the corresponding existing pool(s) by bound-
ing from above with the merge/split slice polygon, and generate
new pool(s) by bounding from below with the same merge/split
slice polygon. Then, for 1 ≤ i ≤ |S(z−)| and for 1 ≤ j ≤ |S(z+)|, we
compute proj(si(z−)) ∩proj(sj(z+)). If there are p and q such that
proj(sp(z−))∩ proj(sq(z+)) /= ∅, and pool(sp(z−)) /= pool(sq(z+)), we
add a directed edge from the node corresponding to pool(sq(z+))
to the node corresponding to pool(sp(z−)) in the directed graph
(Fig. 1(f)).

3.3. Predicting water trap regions

After completing the sweep from z =− ∞ to z =+ ∞, the space W is
segmented into pools that are connected to each other in the graph
by edges oriented in the direction of gravity if they are bounded by
the same merge/split slice polygon. Each pool represents a region
that could potentially be a water trap region (except the bottom-
most pool, which represents the exterior of M). Water flowing in
W under gravity will flow between pools according to the directed
edges. Once such flowing water reaches the bottom-most pool,
since by construction it is outside the input geometry, we consider
the water to be drained. Thus, as shown in Fig. 1(g), given a pool, if
there is no path such that we can reach the bottom-most pool from
the corresponding node, the pool is a potential water trap region
(whether or not this water trap is actually formed depends upon the
inflow location). Since we can compute the volume of water each
pool can hold, we can also quantitatively evaluate a given part ori-
entation by summing the volumes of pools that are determined to
be water trap regions.

4. Pool segmentation

In this section, we describe the details of our pool segmenta-
tion algorithm summarized above, given a 2-manifold triangulated
input mesh M.

From M, we can easily obtain the corresponding W by flipping
the orientation of the triangles in M and introducing six rectan-
gles that represent the enlarged axis-aligned bounding box B. Each
rectangle should be split into two triangles such that all the faces
of W are represented by triangles as well.

To implement the pool segmentation algorithm, we have to
know for which values of z beginning, ending, and merge/split slice
polygons occur. We determine all of these values of z by tracking
the evolution of the boundary of slice polygons. Even when a slice
polygon boundary appears, disappears, merges, or splits, the cor-
responding slice polygon does not necessarily appear, disappear,
merge, or split (e.g. because the boundary could correspond to a
hole in a polygon). However, when a slice polygon appears, disap-
pears, merges, or splits, the corresponding slice polygon boundary

Download English Version:

https://daneshyari.com/en/article/1697439

Download Persian Version:

https://daneshyari.com/article/1697439

Daneshyari.com

https://daneshyari.com/en/article/1697439
https://daneshyari.com/article/1697439
https://daneshyari.com

