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a  b  s  t  r  a  c  t

In  single-point  metal  turning  and  boring  processes,  a chip  nest  can often  be  created  that  is  a hazard  to
part  and  operators  alike.  In  order  to mitigate  this,  a process  called  modulated  tool  path  (MTP)  machining
was  developed  that  superimposes  a  sinusoidal  motion  tangent  to the  feed  direction  onto  the  tool  feed
path  to break  chips.  The  sinusoidal  motions  are  created  under  CNC  control  in the  part  program.  In the
current  implementation,  the sinusoidal  motion  is  approximated  as  a series  of short  linear  moves.  Lin-
ear  interpolation  is  currently  used  to create  position  and velocity  commands  to  the  axis  servomotors  at
each  control  loop  closure.  Linear  interpolation  is  a computationally  heavy  and  dated  method  that  is  not
well  tailored  to  a sinusoidal  trajectory.  In  this  paper  a  new  method  called  the  sigmoidal  interpolator  is
introduced  that  honors  all  physical  constraints  of  a machining  system  while  offering  better  tracking  per-
formance  and  lower  accelerations  than  the  linear  interpolator,  all while  reducing  the number  of  possible
state  transitions  of  the  implemented  software  from  approximately  17  to 4.

©  2015  The  Society  of  Manufacturing  Engineers.  Published  by Elsevier  Ltd.  All rights  reserved.

1. Introduction

Metal turning and boring processes can often lead to a ‘chip
nest,’ or a long strand of metal that can wrap around the tool tip
or part. A chip nest can damage the part finish and also presents
a safety hazard, as machine operators removing the nest can be
injured by the razor-sharp strand (see Fig. 1). One solution to this
issue is called modulated tool path (MTP) machining, a process by
which the tool tip is oscillated in the direction of the instantaneous
tool feed motion. A new chip is formed each time the tool enters
and exits the cut [9].

In a single-axis tool path where a normal cutting motion is a
position vs. time ramp, the oscillation is added by superimposing
a sinusoid on the ramp. The frequency and amplitude of the oscil-
lation, as well as the spindle speed, control the length of the chip
that is removed and can also have an impact on the surface finish
of the part [2].

The NC part program generally only provides the start and end
coordinates of linear moves along with the desired feed rate dur-
ing that move. The servo-control system requires a position and
velocity to be specified at each closure of the control loop. These
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intermediate points and velocities are generated by an interpola-
tion algorithm built into the controller. There are many interpolator
implementations. When smooth and vibration-free motions are
desired, it is common to use an algorithm that places limits on
allowable jerk, while simultaneously respecting the physical accel-
eration and velocity capabilities of the machine. This algorithm is
outlined by Altintas [1]. When it is desired to maximize fidelity
to the nominally commanded path, the jerk curve is rectangular
with only three values for jerk, j(t): ±jlim, or zero. This in turn
leads to a trapezoidal-shaped acceleration profile with no disconti-
nuities that would require instantaneous changes in the force or
torque. The velocity and position profiles take on parabolic and
cubic characteristics respectively. A maximum acceleration may
also be instituted, but often it is directly evaluated from the max-
imum allowable jerk [1]. A sample single-axis trajectory is shown
in Fig. 2.

The linear interpolator is the subject of a significant body of
literature. Researchers seeking to improve machine positioning
performance have investigated advanced controller design [4],
improving contour accuracy [5,7], input shaping [6], and high per-
formance [3]. While the linear interpolator is conceptually simple,
practical implementation relies on a large network of if/then state-
ments to determine at what times during each move to switch
from one jerk value to another in order to assure the axis reaches
the desired future positions and velocities without overshoot. This
requires approximately 17 different branching conditions for all
possible states of position, velocity, acceleration, and jerk. Since
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Fig. 1. A chip nest forming on a machine tool during a turning operation. After a
few moments of cutting, these razor sharp strands become tangled with the tool
and workpiece.
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Fig. 2. A sample linear interpolated movement. The green line is the desired move-
ment as provided by the NC program. The blue curve is the jerk-limited linear
interpolator output. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of the article.)

branch conditions are the most expensive processes in terms of
computing time, this invariably leads to large computation time
costs. Secondly, there is often an interpolator delay created by the
acceleration and jerk limitations that is never recouped. In Fig. 2,
this is readily seen by the growing time differential between the
desired curve (green) and the interpolated curve (blue). Typical lin-
ear interpolator implementations accept that the idealized motions
embodied in the part program are physically unrealizable because
the instantaneous velocity changes would require infinite acceler-
ation, and make no attempt to bring the actual tool trajectory back
onto the idealized motion when away from the transients at the
beginning and end of each segment.

This paper reviews strategies for jerk and acceleration limited
trajectory planning called the exponential interpolator developed
by Rymansaib [8], and proposes a sigmoidal interpolator to replace
the planning previously done by linear interpolators at transitions.
This technique will be shown to be more appropriate for periodic
inputs, as well as being useful for standard machining processes,
and requiring fewer branching conditions.

2. Sigmoidal interpolators

Conceptually, the proposed interpolator works by multiplying
the nominal motions described in the NC part program by a sig-
moidal, or S-shaped, “blending” function that smoothly transitions

from zero to one, one to zero, or zero to one and back to zero. The
result is a continuously differentiable curve that obeys the initial
conditions of the commanded motion and reaches the desired nom-
inal trajectory when the value of the function reaches one. Many
sigmoid-type functions exist, including the logistic function, the
arctangent, the hyperbolic tangent, and the error function. Slightly
different implementations are used for the case of startup from rest,
and transition from one commanded velocity to another.

2.1. Startup

For modulated tool path machining, each motion segment is
composed of a linear component for nominal feed and a super-
imposed sinusoidal component for chip breaking. Making use of
superposition, these two  components can be evaluated separately
and then summed to get position, velocity, acceleration, and jerk
values.

Linear component. The linear component of the exponential
interpolator is detailed here, as well as by Rymansaib [8]. The
baseline path for the interpolator to match is given by the linear
equation in (1), where x is the resulting position and m is the linear
slope:

x = mt + b (1)

For initial startup, the equation for the sigmoid interpolator, SL
is:

SL = 1 − e−˛t3
(2)

where  ̨ is a time constant, and t is the time. The order of the time
variable t is chosen as 3 to maintain a zero value at t = 0 for acceler-
ation, as will be shown below. This leads to a sigmoid interpolated
position value xL of:

xL = xSL = (mt + b)(1 − e−˛t3
) (3)

Note that at t = 0 and for sufficiently large values of t, xL = x. The
velocity, ẋL , is:

ẋL = m − e(−˛t3)(m − 3˛mt3 − 3˛bt2) (4)

The velocity is equal to 0 at t = 0, and asymptotically approaches
the commanded feedrate, m.  The value of  ̨ determines how quickly
this occurs. Differentiating a second time, the acceleration, ẍL , is
equal to:

ẍL = e−˛t3
(−9˛2bt4 − 9˛2mt5 + 6˛bt + 12˛mt2) (5)

Again, at t = 0, the acceleration is equal to zero. With ẍL limited
to a physically realizable maximum acceleration and the values of t
known for the movement, the maximum allowable value for  ̨ can
be determined using a numeric solver.

The linear paths generated by the interpolator are shown in
Fig. 3. Note that the sigmoidal interpolator causes the feedrate of
the tool to exceed the desired value for some period of time and it
tries to “catch up” to the commanded trajectory. As  ̨ increases, the
planned trajectory more quickly reaches the desired path.

Sinusoidal component. The desired sinusoidal motion is given by:

x = A sin(ωt) (6)

where A is the sine wave amplitude and ω is the angular frequency.
As with the linear component, the sinusoidal component is multi-
plied by a sigmoidal function to control velocity and acceleration.
The form is similar:

SS = 1 − e−˛t2
(7)

However, the order of t is decreased to 2 as it is not required to
be increased to maintain zero acceleration at time step zero once
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